KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » О. Деревенский - Фокусы-покусы квантовой теории

О. Деревенский - Фокусы-покусы квантовой теории

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "О. Деревенский - Фокусы-покусы квантовой теории". Жанр: Физика издательство неизвестно, год неизвестен.
Перейти на страницу:

Влип Планк, чего уж там. Впрочем, он делал всё что мог – пытаясь прояснить физический смысл, который скрывался за его формулой. Вон, что это за постоянная вылезла, с размерностью «энергия на секунду»? Умножение этой постоянной на частоту давало энергию. Но энергию чего? Для конкретной частоты эта энергия тоже конкретная: столько-то долей джоуля. Но равновесный спектр – сплошной; и количество частот в нём бесконечно. Помножь их всех на постоянную, да просуммируй – бесконечную энергию и получишь. Ну, хоть волком вой! Впрочем, погодите, волчатки мои: можно немного сжульничать и разбить сплошной спектр на интервальчики, на каждом из которых частоту считать постоянной. И тогда всё срастётся: нужный спектр получится, если в каждый интервальчик влепить нужное число конкретных порций энергии! Тех самых!

Казалось бы, дальше всё совсем просто? Отнюдь. Смотрите: распределение энергии в спектре излучения-поглощения удачно моделируется набором порций энергии – набором квантов. Что это означает физически? Тут были разные мнения. Планк поначалу полагал, что кванты проявляются лишь при взаимодействии атомов с морем электромагнитной энергии, т.е. что порциями происходит лишь обмен энергией между атомами и этим морем. Эйнштейн пошёл дальше, полагая, что электромагнитная энергия порциями не только излучается-поглощается, но и распространяется, т.е. что само «море энергии» состоит из отдельных квантов. Здесь-то настоящие трудности и начались. Потому что здесь, наконец-то, проклюнулся физический смысл. А с физическим смыслом у квантовой теории отношения весьма своеобразные: что для физического смысла хорошо, то для квантовой теории – смерть. И наоборот.

Вот, посудите сами. Забыв обо всём на свете, физики просто с ума сходили, мучаясь над глупейшими вопросами. Если энергия кванта света зависит только от частоты, то, к примеру, сколько раз должно что-то колебнуться в кванте с этой частотой, чтобы энергия кванта была в точности равна произведению постоянной Планка на эту частоту? Дичь какая-то! А ведь эта дичь ещё передавала свою порцию энергии атому, отчего в нём что-то осциллировало. Только энергия этих осцилляций зависела уже от двух параметров: от частоты и амплитуды. Спрашивается: каким же чудесным образом энергия трепыханий, зависящая только от частоты, превращается в энергию трепыханий, зависящую от частоты и от амплитуды? Вот, с какой амплитудой и сколько раз должен трепыхнуться атом, чтобы отработать поглощённый световой квант?..

Сегодняшние академики этакими вопросами, конечно, не мучаются. «Мы же не дураки, – поясняют они. – Потому и появилась квантовая теория, что перестали работать старые подходы!» Ну, ну. Старые подходы работать перестали, а новые – заработали, что ли? Или шулерство в вопросе о согласии с опытом – это и есть «новые подходы»? Тогда позвольте вас поздравить: рождение квантовой теории прошло как нельзя лучше! Лихо разобравшись с равновесным спектром, новорожденная направила свой прищуренный взор на учение об атомах. И, с улыбочкой, многообещающе потёрла ладошки одна о другую…

Вообще-то, тогдашние представления об атомах и впрямь были чересчур примитивными: компоновку положительных и отрицательных зарядов приходилось додумывать. Так, пользовалась популярностью модель Томсона, в которой почти вся масса атома и его положительный заряд мыслились распределёнными по некоторому шаровому объёму, а отрицательные электроны мыслились вкраплениями, как «изюм в пудинге». Но вот лаборант Резерфорда обнаружил, что, при обстреле тончайшей фольги альфа-частицами, часть из них отскакивает назад. Такое возможно, если почти вся масса атома сосредоточена в очень малой части его объёма. Отсюда у Резерфорда родилась идея об атомном ядре, которому присуща почти вся масса атома и положительный заряд – а заодно идея о том, что электроны, чтобы не упасть на ядро из-за кулоновского притяжения, должны вокруг него обращаться, будучи удерживаемы центробежными силами.

Как и сейчас, тогда мало кто понимал, что центробежная сила не может действовать на элементарную частицу. Она может действовать лишь на структурное образование из элементарных частиц, возникая из-за радиального градиента их линейных скоростей вращения. А обращение электрона вокруг ядра нисколько не препятствовало бы падению на него. К тому же, непонятно, какие таинственные силы обеспечивали бы восстановление электронных орбит после их возмущений. Вот, для сравнения: спутник на околоземной орбите. В результате небольшого возмущения – например, кратковременного включения двигателя – свободный полёт продолжается уже по новой орбите. Здесь никаких восстанавливающих сил нет. А в атомах они непременно должны быть, потому что атомные конфигурации имеют запас устойчивости. А также – механизм самовосстановления. Об этом свидетельствуют и воспроизводимость размеров атомов, и характеристические атомные спектры излучения-поглощения. И, ведь, самовосстанавливаться есть после чего. Вон, при столкновении пары спутников, запущенных во встречных направлениях и летящих со скоростями в несколько километров в секунду, от них останется мало чего пригодного к употреблению. А орбитальные скорости электронов в атомах, по теоретическим раскладочкам, составляют пару тысяч километров в секунду. Прикиньте-ка, что будет даже при лёгком соприкосновении двух атомов, электроны которых столкнутся своими лобешниками. Ну, допустим, что лобешники у них достаточно железобетонные, так что ошмётки от электронов не полетят. Но ведь их орбитальное движение, как бы, немного нарушится, правда? А теперь вспомните, что в газах, при нормальных условиях, из-за теплового движения атом испытывает примерно миллиард столкновений в секунду. И – ничего, остаётся самим собой. Живучий, стервец! Тут академики попытаются нас образумить – мол, обращение электронов происходит так быстро, что имеет смысл говорить о непроницаемости орбит, из-за которой атомы в газах и отскакивают друг от друга при столкновениях, а электроны разных атомов никак не могут «столкнуться лобешниками». Позвольте, а куда же девается эта непроницаемость орбит, когда атомы, пардон, вступают в химическую связь? Али вы подзабыли, насколько глубоко они при этом проникают друг в друга? Так посмотрите в справочниках: раздел называется «Размеры молекул». Не редкость, что расстояние между центрами атомов в молекуле меньше, чем радиусы самих атомов! Ну, полная гармония: когда хочется, на тебе проницаемость, а когда не хочется, на тебе непроницаемость! И, в чём разница – со стороны совершенно незаметно! Да… такие представления об атомах только и надеялись на ревизию, как на избавление…

Но пришло не избавление, а безысходность пуще прежней. Понимаете, нельзя было ревизию мотивировать тем, что, мол, планетарная модель атома, господа, годится лишь для наивных чукотских девушек. Не дай Бог, кто-нибудь обиделся бы. Поэтому повели такую политику: «Ах, какая она замечательная, планетарная модель! У неё всего один недостаточек! Связанный с излучением электрона, движущегося по орбите! Устранить этот недостаточек – и будет полный ажур!» Это они вот о чём. По классическим представлениям, осцилляции электрона в атоме означали его пребывание в возбуждённом состоянии: при поглощении электромагнитной энергии эти осцилляции «раскачивались», а, предоставленные самим себе, затухали – но при этом запасённая электромагнитная энергия излучалась. Теперь, смотрите-ка: что такое орбитальное движение электрона в планетарной модели? Да не что иное, как его двумерные осцилляции! Никто отчего-то не пояснял, откуда это орбитальное движение бралось – кто это так удачно давал электрону пинка нужной силы и в нужном направлении. Но все сходились в том, что, выйдя на атомную орбиту после этого удачного пинка, предоставленный самому себе электрон начал бы терять энергию на излучение. И очень быстро потерял бы её всю, за несколько оборотов упав на ядро. Выходила нелепица: атомы, мол, долго жить не должны, а они живут. Вот, мол, в какой тупик заводят классические представления при умелом пользовании! Ищи, мол, теперича выход из этого тупика!

Тут-то опять и сработал квантовый подход, на основе которого Бор предложил на редкость блистательный выход. Учитесь, студенты: если проблема связана с излучением движущегося по орбите электрона, то эта проблема устраняется простеньким постулатом о том, что движущийся по орбите электрон не излучает. Делов-то, господи! Только требовались ещё кой-какие уточнения. Судя по обилию линий в атомных спектрах, в атомах допустимы целые наборы волшебных орбит, на которых электрон не излучает. А, дескать, излучает он только при перескоке с одной орбиты на другую, более низкую. Соответственно, поглощает он при перескоке на орбиту более высокую. Причём, такие излучения-поглощения с очевидностью должны происходить порциями, т.е. квантами – в великолепном, мол, согласии с гипотезой Планка!

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*