KnigaRead.com/

Стивен Хокинг - Мир в ореховой скорлупе

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Стивен Хокинг, "Мир в ореховой скорлупе" бесплатно, без регистрации.
Перейти на страницу:

И хотя наблюдения лишь косвенным образом подтверждают существование излучения черных дыр, каждый, кто изучил проблему, согласится, что оно должно иметь место, чтобы не возникало противоречий с другими, проверенными путем наблюдений теориями. Это имеет важные следствия для детерминизма. Излучение черной дыры уносит энергию, а следовательно, она теряет массу и становится меньше. Значит, ее температура будет возрастать, а интенсивность излучения — увеличиваться. В конце концов черная дыра уменьшится до нулевой массы. Мы не знаем, как рассчитать, что случится в тот момент, но, по-видимому, имеется только одна естественная и разумная возможность, состоящая в том, что черная дыра полностью исчезнет. Так что же случится тогда с той частью волновой функции, которая находится в черной дыре, и с той информацией, которую она несет о том, что упало в черную дыру? На первый взгляд эта волновая функция и содержащаяся в ней информация должны выйти наружу после окончательного исчезновения черной дыры. Однако информация не передается даром, в чем вы могли убедиться, получая телефонные счета.

Положительная энергия, уносимая тепловым излучением из-под горизонта, уменьшает массу черной дыры. По мере сокращения массы температура черной дыры возрастает, а вместе с ней и интенсивность излучения. Поэтому масса теряется все быстрее и быстрее. Мы не знаем, что случится, если масса станет очень маленькой, но, вероятнее всего, черная дыра полностью исчезнет.



Для переноса информации требуется энергия, а на последних стадиях существования черной дыры энергии очень мало. Единственный правдоподобный способ, которым информация могла бы выбраться из черной дыры наружу — это, не дожидаясь финальной стадии, постепенно выходить вместе с излучением. Однако в рамках картины, где один член пары виртуальных частиц падает, а другой улетает, нельзя ожидать, что улетевшая частица будет связана с той, что упала, или вынесет какую-то информацию о ней. Так что единственным ответом будет, по-видимому, утверждение, что информация, содержащаяся в части волновой функции внутри черной дыры, пропадет (рис. 4.19).



Такая потеря информации должна иметь принципиальное значение для детерминизма. Для начала заметим, что, даже если знать волновую функцию после исчезновения черной дыры, невозможно прогнать уравнение Шрёдингера назад и вычислить, какой она была до того, как черная дыра образовалась. То, какой она была, отчасти зависит от того фрагмента волновой функции, который пропал в черной дыре. Мы привыкли считать, что прошлое можно знать точно. Однако, если информация теряется в черных дырах, то это не так. Могло происходить что угодно.

В целом, однако, люди — как астрологи, так и те, кого они консультируют, — больше интересуются предвидением будущего, чем ретроспекцией прошлого. На первый взгляд может показаться, что потеря части волновой футгкции в черной дыре не препятствует предсказанию волновой функции вовне. Но, как мы увидим из рассмотрения мысленного эксперимента, предложенного Эйнштейном, Борисом Подольским и Натаном Розеном в 1930-х гг., эта потеря, оказывается, мешает таким предсказаниям.



В мысленном эксперименте Эйнштейна — Подольского — Розена наблюдатель, измеривший спин одной частицы, будет знать направление спина другой частицы.

Виртуальная пара имеет волновую функцию, которая предсказывает, что частицы будут обладать противоположными спинами. Но если одна из частиц упадет в черную дыру, спин оставшейся невозможно надежно предсказать.



Представьте, что радиоактивный атом распадается и испускает в противоположных направлениях две частицы с противоположными спинами. Наблюдатель, который видит только одну частицу, не может предсказать, будет она вращаться вправо или влево. Но если наблюдатель определит, что она вращается вправо, то он сможет с уверенностью предсказать, что другая частица вращается влево, и наоборот (рис. 4.20). Эйнштейн думал, что это доказывает нелепость квантовой механики: ведь вторая частица может к этому моменту оказаться на другом краю галактики. Однако большинство ученых считают, что запутался Эйнштейн, а не квантовая теория. Мысленный эксперимент Эйнштейна — Подольского — Розена не говорит о возможности передавать информацию быстрее света. Это было бы противоречием. Нельзя до измерения выбрать свою частицу пары, таким образом чтобы после измерения оказалось, что она вращается вправо, а значит, невозможно и заставить частицу у далекого наблюдателя вращаться влево.

Фактически этот мысленный эксперимент в точности соответствует тому, что происходит с излучением черной дыры. Волновая функция пары виртуальных частиц как раз такова, что оба ее члена будут обязательно иметь противоположные спины (рис. 4.21). Нам хотелось бы предсказать спин и волновую функцию улетающей частицы, что можно сделать, если мы пронаблюдаем частицу, падающую в черную дыру. Но эта частица теперь находится внутри черной дыры, где ее спин и волновую функцию нельзя измерить. По этой причине нельзя предсказать спин и волновую функцию улетающей частицы. Она может с той или иной вероятностью иметь разные спины и разные волновые функции, но у нее не будет строго определенного спина или волновой функции. Это, по всей видимости, ограничивает нашу способность предсказывать будущее.

Классическая идея Лапласа о возможности предсказать положения и скорости частиц была модифицирована, когда появился принцип неопределенности, не позволяющий одновременно точно определять и положения, и скорости. Однако по-прежнему можно было определять волновую функцию и использовать для предсказания будущего уравнение Шрёдингера. Оно дает возможность с уверенностью предсказывать некую комбинацию положения и скорости, то есть половину того, что позволялось согласно идее Лапласа. Мы можем надежно предсказать, что частицы имеют противоположные спины, но если одна частица падает в черную дыру, то об остающейся частице мы ничего не можем сказать с уверенностью. Это означает, что никакие результаты измерений вне черной дыры не могут быть предсказаны совершенно надежно: наша способность делать такие предсказания падает до нуля. Так что, быть может, астрологи предсказывают будущее не хуже, чем законы физики.

Черные дыры можно представлять себе как пересечения р-бран в пространстве-времени с дополнительными измерениями. Информация о внутреннем состоянии черных дыр будет сохраняться в форме волн на р-бранах.






Слева: Частица, падающая в черную дыру, может рассматриваться как замкнутая в петлю струна, ударяющаяся в р-брану. В центре: Это возбуждает волны на р-бране. Справа: Волны могут, наложившись друг на друга, заставить часть р-браны оторваться в форме замкнутой струны. Это будет частица, испущенная черной дырой.

Многим физикам не нравится такое ограничение детерминизма, и они предполагают, будто информация о том, что находится внутри, каким-то образом выходит из черной дыры. Долгие годы это предположение питалось лишь благими надеждами на то, что будет найден какой-то способ спасти информацию. Однако в 1996 г. Эндрю Стромингер и Камран Вафа добились существенного прогресса. Они стали рассматривать черную дыру как объект, составленный из набора строительных блоков, называемых р-бранами.

Напомним, что р-браны можно представлять себе как листы, движущиеся в трех измерениях нашего пространства и одновременно в семи дополнительных измерениях, которых мы не замечаем (рис. 4.22). В некоторых случаях удается показать, что число волн на р-бранах совпадает с количеством информации, которая, как ожидается, содержится в черной дыре. Когда частицы сталкиваются с р-бранами, в них возбуждаются новые колебания. Аналогично, если волны, движущиеся в разных направлениях по р-бране, сходятся в некоторой точке, они могут породить столь большой пик, что кусочек р-браны отделится и улетит в виде частицы. Таким образом, р-браны могут поглощать и испускать частицы, подобно черным дырам (рис. 4.23).



Идею с р-бранами можно считать эффективной теорией. Хотя и не требуется верить в то, что маленькие листочки действительно летают вдоль и поперек плоского пространства-времени, черные дыры могут вести себя так, будто они составлены из таких листков. Здесь уместна аналогия с водой: то обстоятельство, что она состоит из миллиардов и миллиардов сложно взаимодействующих между собой молекул Н2О, нисколько не мешает представлению о непрерывной жидкости оставаться для нее очень эффективной моделью. Математическая модель черных дыр, сложенных из р-бран, по результатам похожа на описанную выше модель с парами виртуальных частиц.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*