KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Брайан Грин - Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)

Брайан Грин - Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Брайан Грин, "Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)" бесплатно, без регистрации.
Перейти на страницу:

Эта глубокая связь между гравитацией и ускоренным движением, несомненно, представляет собой блестящую догадку, но почему она сделала Эйнштейна столь счастливым? Причина, попросту говоря, состоит в том, что гравитация — загадочное явление. Это грандиозная сила, пронизывающая жизнь космоса, но она ускользающе непонятна. С другой стороны, ускоренное движение, хотя и является несколько более сложным, чем равномерное, является конкретным и вполне материальным. Эйнштейн понял, что, благодаря взаимосвязи между этими явлениями, он может использовать понимание ускоренного движения в качестве могучего инструмента для достижения такого же понимания гравитации. Претворить эту стратегию в жизнь было нелегко даже для такого гения, как Эйнштейн, но, в конечном счете, этот подход принес свои плоды в виде общей теории относительности. Чтобы достичь этого, Эйнштейну пришлось выковать второе звено цепи, объединяющей гравитацию и ускоренное движение, — кривизну пространства и времени, — к обсуждению которой мы сейчас перейдем.

Ускорение и искривление пространства и времени

Эйнштейн работал над проблемой гравитации с предельной, часто чрезмерной интенсивностью. Примерно через пять лет после счастливого озарения в бернском патентном бюро, он писал физику Арнольду Зоммерфельду:

«Сейчас я работаю исключительно над проблемой гравитации… одно могу сказать определенно — никогда в моей жизни я не изнурял себя так, как сейчас… по сравнению с этой проблемой первоначальная (т. е. специальная) теория относительности кажется детской забавой».[17]

Следующий ключевой прорыв, касающийся простого, но неочевидного следствия применения специальной теории относительности для установления связи между гравитацией и ускоренным движением, был сделан, по-видимому, в 1912 г. Чтобы понять этот шаг в исследованиях Эйнштейна, проще всего обратиться (так, вероятно, поступил и Эйнштейн) к конкретному примеру ускоренного движения.[18] Вспомним, что объект считается ускоренно движущимся, если он изменяет скорость или направление своего движения. Для простоты ограничимся ускоренным движением, в котором скорость остается постоянной, а изменяется только направление движения тела. Конкретно рассмотрим движение по кругу, которое можно увидеть на аттракционе Верхом на торнадо. В этом аттракционе вы становитесь внутрь большого круга, по краю которого расположена стенка, изготовленная из плексигласа, прижимаетесь спиной к этой стенке, и круг начинает вращаться с большой скоростью. Как при всяком ускоренном движении (вы можете ощутить его), вы почувствуете, что ваше тело отбрасывается по радиусу от центра вращения, а круговая плексигласовая стенка вдавливается в вашу спину, не давая вам вылететь с круга. (На самом деле, хотя это не относится к нашему разговору, вращательное движение «прилепляет» ваше тело к плексигласу с такой силой, что когда планка, на которой вы стоите, уходит из-под ног, вы не падаете, а остаетесь прижатым к стенке.) Если движение плавное, и вы закроете глаза, давление, которое будет действовать на вашу спину в результате вращения, — совсем как давление со стороны матраса в постели — почти способно создать иллюзию, что вы лежите. Слово «почти» связано с тем фактом, что вы продолжаете испытывать действие обычной, «вертикальной» гравитации, которая не дает вашему мозгу одурачить себя. Но если бы вам довелось кататься на этом аттракционе в открытом космосе, и если бы скорость вращения была соответствующей, вы бы почувствовали себя лежащим в обычной постели на Земле. Более того, если бы вы «встали» и попробовали бы прогуляться по внутренней поверхности вращающейся плексигласовой стенки, ваши ноги ощутили бы точно такое же давление, какое они испытывают на обычном полу. На самом деле, проекты космических станций предусматривают подобное вращение для создания искусственной силы тяжести в космическом пространстве.

Теперь, используя ускоренное движение во вращающемся аттракционе для имитации действия силы тяжести, можно, следуя Эйнштейну, посмотреть, как выглядят пространство и время для тех, кто находится на круге. Его рассуждения в приложении к нашей ситуации были бы такими. Мы, неподвижные наблюдатели, легко можем измерить длину окружности и радиус вращающегося круга. Например, чтобы измерить длину окружности, мы будем аккуратно прикладывать рулетку к ободу вращающегося круга; для измерения радиуса мы будем также аккуратно перемещать рулетку от оси вращения к внешнему краю круга. Как можно предположить, основываясь на школьном курсе геометрии, отношение эти двух величин будет равно 2π (около 6,28), в точности таким же, как для окружности, нарисованной на плоском листе бумаги. А как это будет выглядеть с точки зрения того, кто катается на этом аттракционе?

Чтобы узнать это, мы попросили Слима и Джима, которые как раз катаются на этом аттракционе, выполнить для нас несколько измерений. Мы бросили одну из наших рулеток Слиму, который отправился измерять длину окружности, а другую — Джиму, который будет измерять радиус. Чтобы увидеть все наилучшим образом, взглянем на круг с высоты птичьего полета, как показано на рис. 3.1. Мы снабдили снимок стрелками, показывающими мгновенное направление движения в каждой точке. Как только Слим начинает измерять длину окружности, нам, из положения сверху, сразу становится понятно, что он получит не то значение, которое получили мы. Когда он прикладывает рулетку к окружности, мы замечаем, что ее длина уменьшается.

Рис. 3.1. Линейка Слима укорачивается, так как она прикладывается вдоль направления движения круга. Линейка же Джима лежит вдоль радиуса круга, перпендикулярно направлению движения, и поэтому ее длина не уменьшается.

Это не что иное, как обсуждавшееся в главе 2 лоренцево сокращение, которое связано с тем, что длина тела представляется уменьшившейся в направлении его движения. Уменьшение длины рулетки означает, что мы должны будем уложить ее, совмещая начало с концом, большее число раз, чтобы обойти весь круг. Так как Слим продолжает считать, что длина рулетки составляет один метр (поскольку между ним и его рулеткой нет относительного перемещения, он думает, что она имеет свою обычную длину в один метр), он измерит большую длину окружности, чем мы. (Если это кажется парадоксальным, вам может помочь примечание [19])

Ну, а что насчет радиуса? Джим использует тот же метод определения радиуса, и нам, с высоты птичьего полета, видно, что он получит такое же значение, которое получили мы. Причина состоит в том, что его рулетка располагается не по мгновенному направлению движения круга (как было при измерении длины окружности). Она направлена под углом 90 градусов к направлению движения и поэтому не сокращается в направлении своей длины. Следовательно, Джим получит точно такое же значение величины радиуса, какое получили мы.

Но теперь, рассчитав отношение длины окружности колеса к его радиусу, Слим и Джим получат число, которое будет превышать полученное нами значение 2π, поскольку у них длина окружности оказалась больше, а радиус остался тем же самым. Что за чудеса? Как может быть, чтобы для какой-нибудь фигуры в форме окружности нарушалось установленное еще древними греками правило, согласно которому для любой окружности это отношение в точности равно 2π?

Вот объяснение Эйнштейна. Результат древних греков справедлив для окружностей, нарисованных на плоской поверхности. Но подобно тому, как кривые зеркала в парке развлечений искажают нормальную пространственную структуру вашего отражения, так и пространственная форма окружности исказится, если она будет нарисована на искривленной или деформированной поверхности: отношение длины окружности к радиусу для такой окружности, как правило, не будет равно 2π.

В качестве примера на рис. 3.2 приведены три окружности одинакового радиуса. Длины этих окружностей различны. Длина окружности (б), нарисованной на искривленной поверхности сферы, меньше длины окружности (а), нарисованной на плоской поверхности, несмотря на то, что они имеют одинаковый радиус. Искривленный характер поверхности сферы приводит к тому, что радиальные линии, проведенные из центра, слегка сходятся друг к другу, приводя к небольшому уменьшению длины окружности.

Рис. 3.2. Окружность, нарисованная на поверхности сферы (б), имеет меньшую длину, чем окружность, нарисованная на плоском листе бумаги (а), а окружность, начерченная на седлообразной поверхности, будет иметь большую длину, несмотря на то, что все три имеют одинаковый радиус.

Длина окружности (в), нарисованной на седловидной искривленной поверхности, больше, чем длина окружности, изображенной на плоской поверхности. Свойства кривизны седловидной поверхности приводят к тому, что радиальные линии слегка расходятся, вызывая небольшое увеличение длины окружности. Эти наблюдения показывают, что отношение длины окружности к радиусу для (б) будет меньше, чем 2π, а для (в) — больше, чем 2π. Но отклонения от значения 2π, особенно в сторону увеличения, как в примере (в), — это как раз то, что было обнаружено в случае вращающегося аттракциона. Подобные наблюдения привели Эйнштейна к идее, что нарушение «обычной», евклидовой геометрии объясняется кривизной пространства. Плоская геометрия древних греков, которой тысячи лет учат школьников, попросту не применима к объектам на вращающемся круге. Вместо этого здесь имеет место ее обобщение на случай искривленного пространства, схематически показанное на рис. 3.2в.[19]

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*