Майкл Файер - Абсолютный минимум. Как квантовая теория объясняет наш мир
Если предметом эксперимента является фотоэлектрический эффект, фотоны ведут себя как частицы. Один фотон толкает один электрон и выбивает его из металла (см. рис. 4.3). Фотон — это волновой пакет, порождённый набором импульсных собственных состояний. Набор с широким разбросом ∆p даёт относительно хорошо определённое положение, то есть относительно небольшое значение ∆x. В этом случае фотонный волновой пакет имеет более или менее определённое положение и может вести себя как частица света в электрическом эффекте.
В интерференционном эксперименте (см. рис. 5.1) фотоны ведут себя как волны. Это не должно удивлять, поскольку волновой пакет фактически и является суперпозицией волн, но не волн в обычном классическом смысле, а волн амплитуды вероятности. Обсуждая явления интерференции, мы рассматривали фотонную волну как единую волну амплитуды вероятности. Теперь ясно, что в действительности это волновой пакет, представляющий собой суперпозицию волн. Попадая на расщепляющее пучок полупрозрачное зеркало, он становится суперпозицией двух трансляционных состояний: T1 и T2. Волны амплитуды вероятности состояния T1 интерферируют с соответствующими волнами состояния T2 и порождают интерференционную картину, которая обсуждалась выше.
Дифракция света
Итак, фотон ведёт себя как частица в случае фотоэлектрического эффекта, но может также вести себя и как волна. Эксперимент, ясно демонстрирующий волновые свойства фотонов, — это дифракция света на дифракционной решётке. Дифракцию можно наблюдать с помощью музыкального компакт-диска (CD) на ярком свету, например солнечном. На поверхность CD нанесены очень тонкие канавки. Это дорожки, на которых хранится информация. Как объясняется далее, при падении на CD белого света от солнца или лампочки канавки вызывают его дифракцию, отчего каждый цвет отражается в своём направлении. Разные участки CD расположены под разными углами относительно вашего глаза, из-за чего они зрительно окрашиваются в разные цвета.
Дифракция на решётке используется в оптических инструментах, называемых спектрометрами. Эти инструменты разделяют входящий в них свет на цвета, так что цвета можно анализировать по отдельности. Запись цветов, составляющих свет от конкретного источника, называется спектром. Например, звёзды испускают свет различного цвета в зависимости от их температуры. Получение спектра звёздного света даёт массу информации о звезде. На своём пути через космос звёздный свет встречает различные молекулы. В главе 8 и далее рассказывается о том, что разные молекулы поглощают свет разных цветов. Поэтому по пути к Земле некоторые цвета звёздного света частично поглощаются космическими молекулами. Астрономы устанавливают спектрометры на телескопах и снимают спектры, чтобы определить, какие молекулы находятся между Землёй и конкретной звездой.
На рис. 7.1 показана геометрия дифракции света на решётке. Входящий свет падает на решётку под углом α (греческая буква «альфа») к нормали. Нормаль — это направление, перпендикулярное поверхности. На рисунке мы смотрим на решётку сбоку. Поверхность решётки, которая глазу кажется плоским зеркалом, плотно покрыта идущими параллельно друг другу канавками. Эти канавки называют штрихами. На рис. 7.1 расстояние между штрихами обозначено буквой d. Это расстояние сравнимо с длиной волны света и составляет около одной десятимиллионной метра. Канавки обладают высокой отражательной способностью. Обычно они покрыты золотом или серебром. Если входящий свет состоит из набора цветов, то отражённый свет разделяется по цветам так, что свет каждого цвета следует в своём уникальном направлении. Это разделение света по цветам проиллюстрировано на рис. 7.1. На рисунке угол между нормалью к решётке и направлением конкретного — голубого — цвета обозначен β (греческая буква «бета»). Для зелёного цвета угол β будет больше, а для красного — ещё больше.
Рис. 7.1.Геометрия дифракции света на решётке. Решётка представляет собой отражающую поверхность, обычно серебряную или золотую, покрытую очень тонкими параллельными канавками. Показан вид решётки сбоку. Сама она уходит за страницу. Все канавки находятся на строго постоянном расстоянии d друг от друга; α — угол входящего света. Свет отражается под углом β, зависящим от его цвета. В результате дифракции происходит разделение цветов
Рис. 7.2. Входящие фотонные волновые пакеты испытывают дифракцию на решётке. От канавок отражается свет различных цветов. Для каждого цвета существует направление, в котором волны соответствующего цвета интерферируют конструктивно. Они складываются, давая большую амплитуду волны, так что цвет выглядит очень ярким именно в этом направлении
Дифракция света демонстрирует волновую природу фотонов
Дифракция света на решётке демонстрирует волновую природу фотонных волновых пакетов. Для того чтобы понять, каким образом дифракция выявляет волновой характер фотонов, нужно рассмотреть механизм дифракции с точки зрения конструктивной и деструктивной интерференции волн. На рис. 7.2 входящий фотонный волновой пакет показан как луч света, падающий на дифракционную решётку. Чтобы достичь разных частей решётки, свету приходится пройти разное расстояние. Свет, попадающий на верхнюю левую часть решётки, проходит меньший путь, чем свет, падающий на нижнюю правую её часть. Волновой пакет состоит из множества цветов, то есть множества волн разной длины λ.
Свет разных цветов будет расходиться от решётки по всем направлениям. Однако здесь-то и начинаются тонкости. Волновые пакеты более или менее локализованы, но они состоят из различных цветов, каждый из которых представляет собой делокализованную волну амплитуды вероятности (см. рис. 6.1, 6.2, 6.4 и 6.7). Более или менее локализованный волновой пакет образуется за счёт интерференции множества волн разного цвета (с разными λ, которым соответствуют разные импульсы p). Рассмотрим один конкретный цвет — красный, который составляет часть волнового пакета. Если волна падает только на один штрих решётки, то из-за формы канавки она отразится по множеству направлений. От этой канавки она уйдёт в состояние суперпозиции волн амплитуды вероятности, распространяющихся по множеству направлений. В интерферометре (см. рис. 5.1) входящий волновой пакет переходит в состояние суперпозиции, волны амплитуды вероятности которого распространяются по двум направлениям. Здесь же после попадания на одиночный штрих суперпозиция будет распространяться по множеству направлений.
Важная особенность решётки состоит в том, что входящая волна падает на множество её штрихов. Для конкретного цвета, например красного, как показано на рис. 7.2, имеется одно направление, в котором волны будут складываться конструктивно. На данном рисунке для направления, в котором распространяются красные волны, пики и впадины этих волн складываются в фазе, несмотря на то что отражаются они в разных местах. (Длина волны на рисунке была преувеличена по сравнению с расстоянием d между штрихами, чтобы было лучше видно выравнивание волн.) Синфазное сложение множества волн, уходящих от решётки, делает отражённую волну очень большой. На всех остальных направлениях красные волны будут складываться деструктивно, поскольку пики и нули не выровнены друг с другом.
Дифракция на решётке заставляет волны определённой длины (конкретного цвета) конструктивно складываться в одном направлении. Интенсивность света, связанная с амплитудой вероятности световой волны, пропорциональна квадрату амплитуды волны. Поэтому в направлении конструктивной интерференции для конкретного цвета, например красного, интенсивность света оказывается велика. В других направлениях красный свет будет испытывать деструктивную интерференцию, поскольку его длина волны такова, что разность расстояний до каждой канавки не равна целому числу длин волн. Для другого цвета, скажем голубого, существует другое направление, вдоль которого свет, приходящий от всех канавок, будет складываться конструктивно (см. рис. 7.1). Поэтому голубая составляющая входящего фотонного волнового пакета будет покидать решётку в виде волны большой амплитуды в своём собственном направлении, и в этом направлении интенсивность голубой составляющей входящего света будет выглядеть очень большой.
Электроны в кинескопе ведут себя как снаряды