Александр Петров - Гравитация. От хрустальных сфер до кротовых нор
Тот же вывод можно сделать по-другому. Нанесем на наклонных мировых значения собственного времени путешественника и соединим их с точно такими же значениями для времени на мировой линии домоседа. Получим два набора параллельных линий, как на рис. 5.5, первый набор синхронизован на момент их разлуки и в будущее, второй набор синхронизован от момента встречи и в прошлое. Эти наборы параллельных линий всегда про-странственноподобны, они не имеют никакого отношения ни к световым конусам, ни к реальным наблюдателям. Очевидно, домосед проживет больше времени, см. рис 5.5. Отрезок на временной оси, не получивший своих точек-двойников на ломаной линии, определяет – насколько домосед будет старше путешественника при встрече.
Ситуация на рис. 5.5 несколько утрирована. Получается, что брат-путешественник стартовал с бесконечным ускорением, затем развернулся с бесконечным ускорением, и т. д. Реальная мировая линия брата-путешественника конечно плавная, соответствующая конечным ускорениям. Однако выводы не изменятся. Мы можем кривую аппроксимировать ломаной, причем с любой точностью. А анализ ломаной мировой линии, имеет она два отрезка, как на рис. 5.5, или любое другое количество отрезков, принципиально не отличается. Другими словами, парадокса не возникает, если не нарушаются правила вычисления интервалов. Тогда результат всегда таков: интервал отрезка aw на рис. 5.5 больше интервала, измеренного вдоль любой другой мировой линии, соединяющей события a и w. То есть собственное время домоседа всегда больше собственного времени любого путешественника из a в w.
Некоторые особенности ускоренных наблюдателей обсуждаются в Дополнении 6, которое лучше читать после главы 8 (о черных дырах).
Пуанкаре и Эйнштейн
В исторической литературе о науке много внимания уделяется взаимоотношениям создателей СТО в начале прошлого века. Иногда оценки разнятся чрезвычайно. К сожалению, часто доходят до крайностей, ничем не обоснованных. Можно было бы об этом просто не писать, но великие создатели великой теории тоже были людьми. Взаимоотношения были частью их жизни и, так или иначе, были связаны и с их творчеством.
Поскольку основными создателями СТО по праву считаются Пуанкаре и Эйнштейн, то на их взаимные отношения и отношение к ним научного сообщества обратим особое внимание. Весьма взвешанная оценка тех событий дана в послесловии (которое называется «Истоки релятивизма») в книге А. А. Тяпкина и А. С. Шабанова «Пуанкаре», вышедшей в 1979 году в серии «Жизнь замечательных людей». Поэтому, в основном, будем следовать изложению этого послесловия, иногда вставляя собственные комментарии. Но прежде, совсем немного об Анри Пуанкаре.
Математические таланты Пуанкаре проявились уже в престижной Политехнической школе. Там он опубликовал свою первую научную работу по дифференциальной геометрии. В 1875 году его приняли в еще более авторитетное заведение – Горную школу, где в 1879 году он защитил докторскую диссертацию, которая была оценена как «заслуживающая многих хороших диссертаций».
После этого Пуанкаре преподавал в нескольких университетах, иногда одновременно. Опубликовал несколько важных статей, фактически создавая новые разделы математики. Его исследования тесно связаны с небесной механикой и астрономией.
В 1887 году король Швеции Оскар II объявил математический конкурс и предложил участникам на выбор четыре темы. Самой сложной была первая: рассчитать совместное движение тел Солнечной системы. За нее и взялся Пуанкаре. Для решения этой проблемы, как минимум, необходимо было решить задачу совместного движения трех тел. Пуанкаре показал, что задача трех тел не имеет аналитического решения, но предложил эффективные методы приближенного решения. Эта работа и последовавшие за ней содержат идеи, ставшие базовыми для «теории хаоса».
Рис. 5.6. Анри Пуанкаре
Позднее Пуанкаре реализует замысел создания качественной геометрии, или топологии. С начала XX века он много занимается философией математики, ролью интуиции в науке. Однако основной сферой интересов в это время становятся физика.
О Пуанкаре как о человеке современники отзывались исключительно хорошо. Он никогда не участвовал в скандалах, всегда был доброжелательным. В научных спорах был тверд, но вежлив.
Теперь перейдем к событиям великой эпохи.
Начнем с того момента, когда преобразования Лоренца стали известны его современникам, пытающимся распутать клубок противоречий. Пуанкаре одним из первых понял, что необходима инвариантная относительно этих преобразований механика. И он впервые представляет уравнения классической механики в групповых переменных (инвариантной форме). Но в трудах ученых, развивавших это направление, не найдешь ссылок на новаторскую работу французского математика и механика. Возможно, она была слишком математезирована, возможно, его коллеги в то время «были не в теме» – статья была опубликована в 1901 году. Цитировать стали опубликованные только в 1904 году две статьи немецкого механика Георга Гамеля (1877–1954), в которых он тоже приходит к инвариантной записи уравнений движения.
В специальной теории относительности инвариантный подход получил дальнейшее развитие. И здесь первый шаг был сделан Пуанкаре, четко сформулировавшим требование инвариантности законов всей физики относительно преобразований Лоренца. Замечательный немецкий математик Феликс Клейн (1849–1925) писал впоследствии: «То, что современные физики называют теорией относительности, является теорией инвариантов четырехмерной области пространства-времени… относительно… «лоренцевой группы».
Рис. 5.7. Альберт Эйнштейн
Долгие годы инвариантное представление теории относительности целиком приписывалось Минковскому, развившему его несколько лет спустя. Но надо сказать, что в позднее время, когда требование инвариантности стало в физике нормой теоретического знания, ученые отдают должное Пуанкаре в становлении этого фундаментального подхода. Сейчас релятивистская инвариантность любой физической теории в плоском пространстве-времени формулируется как инвариантность относительно группы Пуанкаре. Введенные им преобразования более общие, чем преобразования Лоренца. К этому позднему признанию научная общественность пришла после длительного замалчивания вклада французского ученого в новую величайшую теорию физики.
Необходимо, конечно, отметить, что кроме отношений ученых между собой было противостояние научных школ, и это сказывалось с самого начала построения СТО. Тенденциозность представителей немецкой физической школы не исчезла после смерти Пуанкаре. В 1913 году в Германии вышел сборник работ классиков релятивизма под редакцией видного физика-теоретика Арнольда Зоммерфельда (1868–1951). В нем были опубликованы статьи Лоренца, Эйнштейна и Минковского. Работы Пуанкаре не были включены ни в это первое, ни в последующие издания сборника. Умалчивая о его достижениях, немецкие физики упорно представляли Эйнштейна единственным создателем теории относительности, Лоренца – его предшественником, а Минковского – последователем.
Французская школа физики оказалась слишком слабой и несамостоятельной, чтобы предпринять какие-либо серьезные шаги для защиты приоритета своего знаменитого соотечественника. Поль Ланжевен (1872–1946), наиболее авторитетный из французских физиков, не проявил настойчивости в своих попытках изменить уже сложившееся мнение. В своем докладе 1913 года, обсуждая различные аспекты новой теории, он неоднократно отмечает вклад Пуанкаре. В том же году Ланжевен публикует статью, посвященную достижениям Пуанкаре в физике, в которой подчеркивает, что французский ученый в то же самое время пришел к тем же самым результатам, что и Эйнштейн. Но в последующем Ланжевен уже не вспоминает об этом. Таким образом, даже во Франции Пуанкаре не снискал популярности как один из создателей теории относительности.
Было бы, наверное, правильно кому-то из виднейших ученых заявить о неоспоримости заслуг Пуанкаре в создании новой теории, и факты неминуемо привели бы научную общественность к необходимости дополнить родившуюся в Германии версию происшедшего в физике переворота. Это произошло, но далеко не в полной мере. В 1914 году крупнейший физик Лоренц выступил в журнале «Акта математика» с яркой статьей о двух работах Пуанкаре. Отмечая, что страницы его статьи «не могут дать хоть сколько-нибудь полного представления о том, чем теоретическая физика обязана Пуанкаре», Лоренц совершенно по-новому освещает значение работ французского ученого, подчеркивая его приоритет в развитии теории, построением которой занимался и он сам. «…Я должен, прежде всего, сказать, что меня весьма ободрил благосклонный интерес, который неизменно проявлял Пуанкаре к моим исследованиям, – пишет голландский физик. – Впрочем, вскоре будет видно, насколько он меня превзошел».