KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Брайан Грин - Брайан Грин. Ткань космоса: Пространство, время и структура реальности

Брайан Грин - Брайан Грин. Ткань космоса: Пространство, время и структура реальности

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Брайан Грин, "Брайан Грин. Ткань космоса: Пространство, время и структура реальности" бесплатно, без регистрации.
Перейти на страницу:

12. Те, кто близко знаком с историей предмета, осознают, что возбуждение по поводу открытия Гута было сгенерировано его решениями ключевых космологических проблем, таких как проблемы горизонта и плоскостности, как мы коротко описываем.

13. Вы можете поинтересоваться, может ли электрослабое Хиггсово поле или Хиггсово поле великого объединения выполнять двойную службу – играть роль, которую мы описали в Главе 9, а также одновременно двигать инфляционное расширение в более ранние времена, до формирования Хиггсова океана. Модели этого сорта предлагались, но они обычно подвержены техническим проблемам. Более убедительные реализации инфляционного расширения привлекают новое Хиггсово поле, чтобы играть роль инфлатона.

14. См. комментарий 11 к этой главе.

15. Например, вы можете подумать о нашем горизонте как о гигантской воображаемой сфере с нами в центре, которая отделяет те вещи, с которыми мы могли бы связаться (вещи внутри сферы) от вещей, с которыми мы не смогли бы связаться (вещи вне сферы) за время, прошедшее с Большого взрыва. Сегодня радиус нашей "сферы горизонта" грубо составляет 14 миллиардов световых лет; очень рано в истории вселенной ее (сферы) радиус был намного меньше, поскольку имелось меньше времени для света, чтобы перелететь. См. также комментарий 10 к Главе 8.

16. Поскольку в этом сущность того, как инфляционная космология решает проблему горизонта, чтобы избежать путаницы, позвольте мне выделить ключевой элемент решения. Если однажды ночью вы с вашим другом стоите на большом поле и с удовольствием обмениваетесь световыми сигналами, включая и выключая электрические фонарики, заметим, что не имеет значения, как быстро вы при этом двигаетесь и бегаете друг от друга, вы всегда будете в состоянии потом обменяться световыми сигналами. Почему? Ну, чтобы избежать получения света, которым ваш друг освещает ваш путь, или чтобы ваш друг мог избежать получения света, который вы посылаете на его путь, вам надо убегать друг от друга быстрее скорости света, а это невозможно. Так как это возможно для областей пространства, которые были в состоянии обмениваться световыми сигналами в ранней истории вселенной (а потому, например, могли выровнять свои температуры), сейчас оказаться вне области возможного коммуникационного обмена друг с другом? Как проясняет пример с фонариками, должно быть, чтобы они уносились прочь быстрее, чем скорость света. И в самом деле, колоссальное расталкивание отрицательной гравитации во время инфляционной фазы двигало каждый регион пространства прочь от любого другого намного быстрее скорости света. Еще раз, это не предполагает противоречия с СТО, поскольку предел скорости, установленный светом, относится к движению через пространство, а не к движению от разбухания самого пространства. Так что новое и важное свойство инфляционной космологии в том, что она содержит короткий период, в котором имеется сверхсветовое расширение пространства.

17. Заметим, что численная величина критической плотности уменьшается, когда вселенная расширяется. Но суть в том, что если реальная плотность массы/энергии вселенной равна критической плотности в один момент времени, она будет уменьшаться в точности тем же образом и сохранит равенство критичекой плотности во все времена.

18. Склонный к математике читатель должен заметить, что во время инфляционной фазы размер нашего космического горизонта оставался фиксированным, в то время как пространство чудовищно раздувалось (как можно легко увидеть, выбрав экспоненциальную форму масштабного фактора в комментарии 10 к Главе 8). Именно в этом смысле наша наблюдаемая вселенная в инфляционной схеме является мельчайшим кусочком гигантского космоса.

19. R. Preston, First Light (New York: Random House Trade Paperbacks, 1996), p. 118.

20. Превосходный отчет на общем уровне о темной материи см. L. Krauss, Quintessence: The Mystery of Missing Mass in the Universe (New York: Basic Books, 2000).

21. Подготовленный читатель распознает, что я не провожу отличия между разными проблемами темной материи, которые появляются на разных масштабах наблюдения (галактики, космос), поскольку мой интерес здесь связан только с вкладом темной материи в плотность космической массы.

22. На самом деле имеются некоторые разногласия в отношении того, в этом ли механизм, стоящий за всеми типами сверхновых (я благодарю Д. Спергеля, обратившего мое внимание на это), но однородность этих событий – которая и нужна нам для обсуждения – находится на прочном наблюдательном основании.

23. Интересно заметить, что годами ранее результатов по сверхновым провидческие работы Джима Пиблза из Принстона, а также Лоуренса Краусса из Университета Case Western, Кливленд, Майкла Тернера из Университета Чикаго и Гэри Стейгмана из Огайо предположили, что вселенная может иметь малую ненулевую космологическую константу. В то время большинство физиков не приняли это предположение слишком серьезно, но теперь с данными по сверхновым отношение существенно поменялось. Также заметим, что ранее в главе мы говорили, что расталкивание от космологической константы может быть выражено Хиггсовым полем, которое подобно лягушке на плато, возвышается над своей конфигурацией с минимальной энергией. Так что, поскольку космологическая константа хорошо подходит к данным, более точно исследователи сверхновых заключили, что пространство должно быть заполнено чем-то подобным космологической константе, которое генерирует направленное вовне расталкивание. (Имеются пути, в которых Хиггсово поле могло бы сгенерировать долгодействующее расталкивание, в противоположность короткому взрыву в ранние моменты инфляционной космологии. Мы обсудим это в Главе 14, когда будем рассматривать вопрос о том, на самом ли деле данные требуют космологической константы, или всем требованиям могут отвечать некоторые другие сущности со сходными гравитационными последствиями). Исследователи часто используют термин "темная энергия" как обобщающую фразу для ингредиента вселенной, который невидим для глаз, но заставляет любой регион пространства отталкиваться от любого другого, вместо того, чтобы притягиваться.

24. Темная энергия является наиболее широко принятым объяснением наблюдаемого ускоренного расширения, но выдвигались и другие теории. Например, некоторые предположили, что данные могут быть объяснены, если сила гравитации отличается от обычной силы, предсказанной ньютоновской и эйнштейновской физиками, когда рассматриваемый масштаб расстояний становится экстремально большим – космологического размера. Другие еще не убедились, что данные показывают космическое ускорение, и ожидают проведения более точных измерений. Важно держать в уме эти альтернативные идеи, особенно когда будущие наблюдения должны дать результат, который профильтрует текущие объяснения. Но в настоящее время имеется широкий консенсус, что теоретические объяснения, описанные в главном тексте, самые убедительные.

Глава 11

1. Среди лидеров в ранние 1980е в определении того, как квантовые флуктуации должны давать неоднородности, были Стивен Хокинг, Алексей Старобинский, Алан Гут, Со-Юнг Пи, Джеймс Бардин, Пол Стейнхардт, Майкл Тернер, Вячеслав Михайлов и Геннадий Чибисов.

2. Даже после обсуждения в основном тексте вы все еще можете быть озадачены в отношении того, как мельчайшее количество массы/энергии в кусочке инфлатона могло дать гигантское количество массы/энергии, составляющее наблюдаемую вселенную. Как вы можете взвинтить массу/энергию до величины больше, чем та, с чего вы начали? Ну, как объяснялось в основном тексте, поле инфлатона в силу своего отрицательного давления "извлекало" энергию из гравитации. Это означает, что когда энергия в поле инфлатона возрастает, энергия в гравитационном поле уменьшается. Специальное свойство гравитационного поля, известное с дней Ньютона, что его энергия может становиться произвольно отрицательной. Таким образом, гравитация подобна банку, который готов дать взаймы неограниченное количество денег, – гравитация заключает в себе, по существу, безлимитный ресурс энергии, которую извлекает поле инфлатона во время расширения пространства.

Особая масса и размер начального кусочка однородного поля инфлатона зависит от деталей изучаемой модели инфляционной космологии (больше всего от точных деталей чаши потенциальной энергии поля инфлатона). В тексте я представил, что начальная плотность энергии поля инфлатона была около 1082 грамм на кубический сантиметр, так что объем (10–26 сантиметра)3 = 10–78 кубических сантиметров должен был иметь полную массу около 10 килограммов, т.е. около 20 фунтов. Эти величины типичны для четко определенного класса инфляционных моделей, но означают только то, что они дают вам грубое представление о величинах, с которыми приходится иметь дело. Чтобы дать представление о диапазоне возможностей, позвольте мне заметить, что в хаотических моделях инфляции Андрея Линде (см. комментарий 11 к Главе 10) наша наблюдаемая вселенная должна была появится из начального кусочка даже меньшего размера, 10–33 сантиметра в поперечнике (так называемая длина Планка), чья плотность энергии была даже выше, около 1094 грамм на кубический сантиметр, что в совокупности дает более низкую полную массу около 10–5 грамма (так называемая масса Планка). В этой реализации инфляции начальный кусочек должен был весить примерно так же, как частичка пыли.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*