Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Этот вывод находится в прямом противоречии со специальной теорией относительности, поскольку последняя уверяет, что никакая информация не может быть передана со скоростью, превышающей скорость света. Мгновенное распространение тяготения в максимально возможной степени нарушает это принцип.
Таким образом, в начале XX в. Эйнштейн осознал, что невероятно успешная теория тяготения Ньютона находится в противоречии со специальной теорией относительности. Уверенный в истинности специальной теории относительности, Эйнштейн, невзирая на огромное количество экспериментальных данных, подтверждающих теорию Ньютона, стал работать над новой теорией гравитации, которая была бы совместима со специальной теорией относительности. Это, в конечном счёте, привело его к открытию общей теории относительности, в которой характер пространства и времени вновь претерпел поразительные изменения.
Самая счастливая идея Эйнштейна
Ещё до открытия специальной теории относительности был ясен один существенный недостаток ньютоновской теории тяготения. Хотя теория чрезвычайно точно предсказывала движение тел под действием силы тяготения, она ничего не говорила о том, что представляет собой тяготение. Иными словами, как получается, что два тела, разделённые расстоянием в сотни миллионов километров и более, тем не менее, оказывают влияние на движение друг друга? Каким образом тяготение выполняет свою миссию? Сам Ньютон вполне осознавал существование этой проблемы. По его собственным словам «…непостижимо, чтобы неодушевлённая, грубая материя могла без посредства чего-либо нематериального действовать и влиять на другую материю без взаимного соприкосновения, как это должно бы происходить, если бы тяготение в смысле Эпикура было существенным и врождённым в материи. Предполагать, что тяготение является существенным, неразрывным и врождённым свойством материи, так что тело может действовать на другое на любом расстоянии в пустом пространстве, без посредства чего-либо передавая действие и силу, — это, по-моему, такой абсурд, который немыслим ни для кого, умеющего достаточно разбираться в философских предметах. Тяготение должно вызываться агентом, постоянно действующим по определёнными законам. Является ли, однако, этот агент материальным или нематериальным, решать это я предоставил моим читателям».{8}
Это говорит о том, что Ньютон принимал существование тяготения, и разрабатывал уравнения, которые с высокой точностью описывают его действие, но никогда не предлагал никакого механизма, объясняющего, как оно работает. Он оставил миру «руководство пользователя» по гравитации с описанием того, как её «использовать». Физики, астрономы и инженеры успешно применяли эти инструкции для прокладки курса ракет к Луне, Марсу и другим планетам Солнечной систем, для прогноза солнечных и лунных затмений, для предсказания движения комет и т. п. Но внутренний механизм — содержимое «чёрного ящика» гравитации — Ньютон оставил под покровом тайны. Когда вы пользуетесь плеером для компакт-дисков или персональным компьютером, вы обычно находитесь в таком же состоянии неведения об их внутреннем устройстве. Коль скоро вы знаете, как обращаться с исправным устройством, ни вам, ни кому-либо другому не требуется знать, каким образом оно выполняет ваши задания. Но когда ваш плеер или персональный компьютер выходит из строя, возможность его починки решающим образом зависит от знания его внутреннего устройства. Аналогично Эйнштейн осознал, что, несмотря на сотни лет экспериментального подтверждения ньютоновской теории, специальная теория относительности обнаружила едва уловимую внутреннюю «неисправность», а устранение этой неисправности потребует решить вопрос об истинном механизме тяготения.
В 1907 г., обдумывая эти вопросы за своим столом в патентном бюро швейцарского города Берна, Эйнштейн сумел нащупать центральную идею, которая, после ряда успехов и неудач, в конечном счёте привела его к радикально обновлённой теории тяготения. Предложенный Эйнштейном подход не просто восполнил пробелы в ньютоновской теории, но совершенно изменил наши представления о тяготении, и, что очень важно, оказался полностью совместимым со специальной теорией относительности.
Подход, предложенный Эйнштейном, имеет отношение к вопросу, который беспокоил нас на всём протяжении главы 2. Там мы интересовались, как выглядит мир для двух наблюдателей, двигающихся относительно друг друга с постоянной скоростью. Тщательно сравнивая точки зрения этих двух наблюдателей, мы получили ряд удивительных выводов о сущности пространства и времени. А что можно сказать о наблюдателях, находящихся в состоянии ускоренного движения? Точки зрения этих наблюдателей труднее поддаются анализу, чем в случае наблюдателей, степенно движущихся с постоянной скоростью. Тем не менее, можно поставить вопрос, существует ли способ разрешить эти трудности и осмыслить ускоренное движение в соответствие с новым уровнем понимания пространства и времени.
«Самая счастливая идея» Эйнштейна объясняет, как сделать это. Чтобы понять её, вообразим, что сейчас 2050 г. и вы являетесь главным экспертом ФБР по взрывчатым веществам. К вам обращаются с отчаянной мольбой срочно исследовать объект, который, по-видимому, является бомбой изощрённой конструкции, заложенной в самом центре Вашингтона. Поспешив на место действия и осмотрев бомбу, вы видите, что сбылись ваши самые худшие предчувствия — бомба является атомной и имеет такую мощность, что даже если поместить её глубоко под землю или на дно океана, последствия от взрыва будут опустошительными. После внимательного изучения детонирующего устройства вы видите, что обезвредить его невозможно и, более того, оно содержит защиту нового типа. Бомба смонтирована на весах. Как только показания весов изменятся более чем на 50 % от того значения, которое они показывают сейчас, бомба взорвётся. Изучив часовой механизм, вы видите, что в вашем распоряжении осталась всего неделя. От ваших действий зависит судьба миллионов людей — что же делать?
Итак, смирившись с тем, что на земле и под землёй нет безопасного места, где можно было бы взорвать бомбу, вы приходите к выводу, что остаётся только один выход: необходимо запустить её в космос, где взрыв не причинит ущерба никому. Вы высказываете эту идею на совещании вашей команды в ФБР, и почти немедленно молодой сотрудник перечёркивает этот план. «В вашем предложении есть серьёзный изъян, — говорит ваш ассистент Исаак. — Когда устройство будет удаляться от Земли, его вес начнёт уменьшаться, поскольку гравитационное притяжение со стороны Земли будет ослабевать. Это означает, что показания весов внутри устройства уменьшатся, что приведёт к детонации задолго до того, как бомба удалится на безопасное расстояние». Прежде чем вы успеваете полностью осмыслить это возражение, в разговор вмешивается другой молодой человек. «На самом деле здесь есть ещё одна проблема, которую нам следует обсудить, — заявляет ваш другой ассистент Альберт. — Она столь же важна, как та, на которую указал Исаак, но является более тонкой, поэтому следите внимательно за моим объяснением». Желая взять минуту на размышление, чтобы обдумать возражение Исаака, вы пытаетесь отмахнуться от Альберта, но если уж он начал говорить, остановить его невозможно.
«Для того чтобы запустить устройство в открытый космос, мы должны поместить его на ракету. Чтобы улететь в космическое пространство, ракета должна ускориться, поэтому показания на весах увеличатся, и взрыв снова произойдёт преждевременно. Основание бомбы, которое стоит на весах, будет давить на весы сильнее, чем когда оно находится в покое. Это похоже на то, как ваше тело прижимается к сиденью автомобиля при разгоне. Бомба „вдавится“ в весы точно так же, как ваша спина в спинку сидения. Под давлением показания весов увеличиваются, и это приведёт к взрыву, как только увеличение превысит 50 %».
Вы благодарите Альберта за его комментарий, но мысленно откладываете его в сторону, поскольку по своим последствиям оно совпадает с замечанием Исаака, и безрадостно констатируете, что для того, чтобы убить идею, достаточно одного выстрела, и наблюдение Исаака, которое, несомненно, является правильным, уже сделало это. Без особой надежды вы спрашиваете, есть ли ещё идеи. В этот момент Альберта посещает озарение. «Хотя, взвесив всё ещё раз, — продолжает он, — ваша идея вовсе не кажется мне безнадёжной. Замечание Исаака о том, что сила тяжести уменьшается при подъёме в космическое пространство, означает, что показания весов будут уменьшаться. Моё наблюдение, состоящее в том, что ускорение ракеты при движении вверх заставит устройство давить на весы сильнее, означает, что показания весов будут увеличиваться. В итоге это означает, что в каждый момент следует поддерживать ускорение на таком уровне, чтобы эти два эффекта нейтрализовали друг друга! А именно, на ранних стадиях подъёма, пока ракета ощущает полную мощь земного тяготения, она может ускоряться не очень сильно, так, чтобы оставаться в границах пятидесятипроцентного допуска. По мере того, как ракета будет удаляться всё дальше от Земли, а сила её притяжения будет ослабевать, мы должны увеличить ускорение для того, чтобы скомпенсировать это ослабление. Увеличение показаний весов из-за ускорения может быть сделано в точности равным уменьшению показаний из-за ослабления гравитационного притяжения. Это означает, что в действительности можно сделать так, чтобы показания весов совсем не менялись!»