Брайан Грин - Ткань космоса: Пространство, время и текстура реальности
{231}
В этом разделе я описываю один способ ви́дения конфликта между общей теорией относительности и квантовой механикой. Но в связи с темой поиска правильной природы пространства и времени я должен заметить, что при попытках объединения общей теории относительности и квантовой механики возникают и другие несколько менее понятные, но потенциально важные загадки. Одна из особенно трудных загадок возникает, когда процедура трансформации классической негравитационной теории (вроде электродинамики Максвелла) в квантовую теорию прямолинейно применяется к классической общей теории относительности (как показал Брюс ДеВитт, эта загадка относится к так называемому уравнению Уилера-ДеВитта). В центральном уравнении, которое при этом возникает, получается, что отсутствует переменная времени. Так что вместо того чтобы получить явную математическую реализацию концепции времени — как в случае любой другой фундаментальной теории, — в этом подходе квантования гравитации эволюция во времени должна отслеживаться некоторым физическим свойством Вселенной (таким как её плотность), которое, как мы ожидаем, должно изменяться регулярным образом. На данный момент никто не знает, работоспособна ли эта процедура квантования гравитации (хотя недавно в одном ответвлении этого формализма, именуемом петлевой квантовой гравитацией (см. главу 16), был достигнут большой прогресс), так что неясно, скрывает ли отсутствие явной переменной времени что-то более глубокое (время как производная, эмерджентная концепция?), или нет. В этой главе мы сосредоточимся на другом подходе к объединению общей теории относительности и квантовой механики, теории суперструн.
{232}
Отчасти неправильно говорить о «центре» чёрной дыры как о некотором месте в пространстве. Причина, грубо говоря, заключается в том, что когда кто-то пересекает горизонт событий чёрной дыры — её внешний край, — роли пространства и времени для него меняются местами. Фактически, точно так же, как вы не можете сопротивляться переходу от одной секунды к другой во времени, вы не можете сопротивляться затягиванию в «центр» чёрной дыры, если вы пересекли горизонт событий. Оказывается, что эта аналогия между направленностью вперёд во времени и устремлением к центру чёрной дыры строго обосновывается математическим описанием чёрных дыр. Таким образом, вместо того чтобы думать о центре чёрной дыры как о положении в пространстве, лучше думать о нём как о положении во времени. Более того, поскольку вы не можете уйти за центр чёрной дыры, вы могли бы попытаться думать о нём как о положении в пространстве-времени, где время приходит к концу. Это вполне может оказаться и правильным. Однако, поскольку стандартные уравнения общей теорией относительности не работают при таких экстремально малых размерах и гигантских плотностях массы, наша способность делать определённые утверждения такого типа компрометируется. Конечно, это означает, что если бы мы имели уравнения, которые работали бы в глубине чёрной дыры, мы смогли бы получить важные результаты о природе времени. Это одна из целей теории суперструн.
{233}
Как и в предыдущих главах, под «наблюдаемой Вселенной» я подразумеваю ту часть Вселенной, с которой мы могли бы, по крайней мере в принципе, иметь сообщение в течение времени с момента Большого взрыва. Во Вселенной, которая бесконечна в пространстве, как обсуждалось в главе 8, всё пространство не сжато в точку в момент Взрыва. Определённо, когда мы всё более приближаемся к началу, наблюдаемая часть Вселенной всё более сжимается, но, хотя это трудно изобразить, имеются объекты — бесконечно далеко удалённые, — которые всегда будут оставаться отделёнными от нас, несмотря на то что плотность материи и энергии всё более возрастает.
[234]
Остаток этой главы излагает открытие теории суперструн и обсуждает основные идеи теории относительно унификации структуры пространства-времени. Читавшие «Элегантную Вселенную» (особенно главы с 6 по 8) будут знакомы почти со всем материалом и могут свободно пропустить эту главу и переходить к следующей.
{235}
Леонард Сасскинд в «Элегантной Вселенной», NOVA, трёхчасовые серии Государственной службы радиовещания (PBS), впервые вышли в эфир 28 октября и 4 ноября 2003 г.
[236]
Вспомним, как отмечалось в главе 9, что даже слабый магнит может пересилить притяжение всей земной гравитации и притянуть вверх скрепку для бумаги. Численно это значит, что гравитационная сила составляет примерно 10−42 от величины электромагнитных сил.
{237}
На самом деле сложность проведения экспериментального тестирования для теории суперструн представляет собой ключевое препятствие, которое существенно затрудняет принятие теории. Однако, как мы увидим в следующих главах, в этом направлении был достигнут немалый прогресс; струнные теоретики очень надеются, что находящиеся на подходе ускорители и эксперименты с космическим базированием дадут по меньшей мере косвенные подтверждения в поддержку теории, а при удаче, может быть, даже больше.
{238}
Хотя я не касался этого в тексте явно, замечу, что каждая известная частица имеет античастицу — частицу с той же массой, но с противоположным силовым зарядом (вроде противоположного знака электрического заряда). Античастица электрона есть позитрон; античастица u-кварка есть анти-u-кварк и т. д.
{239}
Как мы увидим в главе 13, недавние работы по теории струн наводят на мысль, что струны могут быть намного больше планковской длины, и это даёт множество критических следствий, включая возможность экспериментальной проверки теории.
[240]
Я могу заметить, что последователи другого подхода по соединению общей теории относительности с квантовой механикой, петлевой квантовой гравитации, которая будет коротко обсуждаться в главе 16, придерживаются той точки зрения, которая недалека от первого из упомянутых выше предположений, — что на самых мелких масштабах пространство-время имеет дискретную структуру.
{241}
Существование атомов сначала доказывалось косвенными путями (как объяснение особых пропорций, в которых могут соединяться различные химические вещества, а позже через броуновское движение); существование первых чёрных дыр было подтверждено (к удовлетворению многих физиков) благодаря наблюдению их влияния на газ, который падает на них с расположенных рядом звёзд, а не через «наблюдение» их непосредственно.
[242]
Связь с массой, возникающей из Хиггсова океана, будет обсуждаться в этой главе позже.
{243}
Поскольку даже слабо колеблющаяся струна имеет некоторое количество энергии, вы можете поинтересоваться, как это возможно для колебательной моды струны давать безмассовую частицу. Ответ снова связан с квантовой неопределённостью. Независимо от того, насколько спокойна струна, квантовая неопределённость означает, что она имеет некоторое минимальное количество дрожаний и ряби. И благодаря волшебству квантовой механики эти индуцированные неопределённостью колебания имеют отрицательную энергию. Когда это объединяется с положительной энергией от самых слабых из обычных колебаний струны, полная материя/энергия оказывается равной нулю.
{244}
Как можно отметить для склонного к математике читателя, наиболее точное утверждение состоит в том, что квадраты масс колебательных мод струны являются целыми крайними квадрата планковской массы. Ещё более точно (и в соответствии с недавними разработками, затронутыми в главе 13), квадраты этих масс являются целыми крайними струнного масштаба (что пропорционально обратному квадрату длины струны). В общепринятой формулировке теории струн струнный масштаб и планковская масса связаны, почему я и допустил упрощение в главном тексте и ввёл только планковскую массу. Однако в главе 13 мы рассмотрим ситуации, в которых струнный масштаб может отличаться от планковской массы.
[245]
Филипп Пети — знаменитый французский канатоходец, прошедший в 1974 г. по канату, натянутому между башнями-близнецами в Нью-Йорке (теми самыми, что были разрушены в результате теракта 11 сентября 2001 г.). (Прим. ред.)
[246]
Если вы посчитаете все направления влево, вправо, по часовой стрелке и против часовой стрелки отдельно, вы придёте к заключению, что червяк может двигаться в четырёх измерениях. Но когда мы говорим о «независимых» измерениях, мы всегда группируем те из них, которые лежат вдоль одинаковых геометрических осей — вроде влево и вправо, а также по часовой стрелке и против часовой стрелки.