Брайан Грин - Брайан Грин. Ткань космоса: Пространство, время и структура реальности
20. Для обсуждения некоторых из этих предложений, см. Tim Maudlin, Quantum Non-locality and Relativity.
Глава 5
1. Для склонного к математике читателя из уравнения tдвижущ = γ(tстационарн – (v/с2)xстационарн), обсужденного в комментарии 9 к Главе 3, мы находим, что список настоящего Шеви в данный момент будет содержать события, которые наблюдатели на Земле будут полагать прошедшими на (v/с2)xЗемл ранее, где хЗемл есть расстояние от Шеви до Земли. Это предполагает, что Шеви движется прочь от Земли. Для движения в направлении Земли v имеет противоположный знак, так что связанные с Землей наблюдатели будут полагать, что такие события произойдут на (v/с2)xЗемл позднее. Выбирая v = 10 миль в час и хЗемл = 1010 световых лет, находим, что (v/с2)xЗемл составит около 150 лет.
2. Это число – и аналогичное число, данное параграфом далее при описании движения Шеви в направлении Земли, – было применимо во время публикации книги. Но поскольку время здесь на Земле течет, они будут становиться несколько неточными.
3. Склонный к математике читатель должен заметить, что метафора сечения пространственно-временного батона под разными углами представляет собой обычную концепцию пространственно-временных диаграмм, изучаемых в курсе СТО. На пространственно-временных диаграммах все трехмерное пространство в данный момент времени с точки зрения наблюдателя, который считается стационарным, обозначается горизонтальной линией (или на более продвинутых диаграммах горизонтальной плоскостью), тогда как время обозначается вертикальной осью. (В нашем рисунке каждое "сечение хлеба" – плоскость – представляет все пространство в один момент времени, тогда как ось, идущая через середину батона, от корки до корки есть временная ось). Пространственно-временная диаграмма обеспечивает наглядный способ иллюстрации точек, из которых составлен список настоящего ваш и Шеви.
Бледные сплошные линии совпадают с временными сечениями (сечениями настоящего) для наблюдателей, покоящихся по отношению к Земле (для простоты мы представляем, что Земля не вращается и не подвержена никаким ускорениям, поскольку это ненужное усложнение картины), а бледные пунктирные линии совпадают с временными сечениями наблюдателей, двигающихся прочь от Земли, скажем, со скоростью 9,3 мили в час. Когда Шеви покоится относительно Земли, первые представляют его сечения настоящего (и поскольку вы покоитесь на Земле в ходе истории, эти бледные сплошные линии всегда представляют ваши сечения настоящего), а самая темная сплошная линия показывает сечение настоящего, содержащее вас (левая темная точка) на Земле двадцать первого века, и его (правая темная точка), когда вы оба еще сидите и читаете. Когда Шеви отправляется прочь от Земли, пунктирные линии представляют его сечения настоящего, а самая темная из пунктирных линий показывает сечение настоящего, содержащее Шеви (который только что встал и отправился гулять) и Джона Уилкса Бута (нижняя левая темная точка). Отметим также, что одно из последующих пунктирных временных сечений будет содержать прогулку Шеви (если он все еще идет!) и вас на Земле двадцать первого века, сидящего и все еще читающего. Поэтому единственный момент для вас будет появляться в двух списках настоящего Шеви – одном списке, существенном до, и одном списке, существенном после того, как он оправился гулять. Это показывает еще и другой путь, в котором простое интуитивное понятие настоящего, – когда оно воображается применимым через пространство, – трансформируется в СТО в концепцию с сильно необычными свойствами. Более того, эти списки настоящего не обозначают причинность: стандартная причинность (комментарий 11 к Главе 3) остается полностью в силе, список настоящего Шеви прыгает из-за того, что он сам перепрыгнул из одной системы отсчета к другой. Но любой наблюдатель, – используя единственный хорошо определенный выбор пространственно-временных координат, – согласится с любым другим в отношении того, какие события на что могут влиять.
4. Подготовленный читатель распознает, что я предполагаю, что пространство-время является пространством-временем Минковского. Аналогичные аргументы в других геометриях не обязательно будут давать полное пространство-время.
5. Albert Einstein and Michele Besso: Correspondence 1903–1955, P, Speziali, ed. (Paris: Hermann, 1972).
6. Обсуждение здесь призвано придать качественный смысл тому, как переживания прямо сейчас вместе с памятью, которую вы имеете прямо сейчас, формируют основу ваших ощущений жизни, в которой вы пережили эту память. Но если, например, ваш мозг и тело были каким-то образом приведены в точно то же состояние, в котором они находятся прямо сейчас, вы должны будете иметь то же самое ощущение прожитой жизни, которое подтверждает ваша память (предполагая, как я это делаю, что основа всех ощущений может быть найдена в физическом состоянии мозга и тела), даже если эти переживания никогда на самом деле не происходили, а были искусственно впечатаны в состояние вашего мозга. Одно упрощение в обсуждении заключается в предположении, что мы можем чувствовать или переживать вещи, которые происходят в отдельный момент, тогда как, на самом деле, течение времени требует от мозга распознавать и интерпретировать все, что бы он на входе ни получал. Хотя это верно, это не имеет особого значения для излагаемой мной точки зрения; это интересное, но совсем не относящееся к делу усложнение, возникающее из анализа времени способом, прямо связанным с человеческими ощущениями. Как мы обсуждали ранее, человеческие примеры помогают делать нашу дискуссию более обоснованной и интуитивной, но это требует от нас отделять те аспекты дискуссии, которые более интересны с биологической, в противоположность физической, точки зрения.
7. Вы можете удивиться, как обсуждение в этой главе соотносится с нашим описанием в Главе 3 объектов, "двигающихся" через пространство-время со скоростью света. Для склонного к математике читателя грубый ответ будет таким, что история объекта представляется кривой в пространстве-времени – путем через пространственно-временной батон, который высвечивает каждое место, которое занимал объект в момент, когда он был там (почти как мы видим на Рис. 5.1). Интуитивное обозначение "движения" через пространство-время тогда может быть выражено на языке "без течения", путем простого обозначения этого пути (в противоположность представлению, что путь проходится на ваших глазах). "Скорость", связанная с этим путем, тогда измеряется величиной, насколько длинный этот путь (от одной выбранной точки до другой), деленной на промежуток времени, записанный по часам, переносимым кем-то или чем-то между двумя выбранными точками пути. Это, еще раз, концепция, которая не содержит какого-либо течения времени: вы просто смотрите на то, что говорят интересующие вас часы в двух представляющих интерес точках. Оказывается, скорость, найденная таким образом, для любого движения равна скорости света. Склонный к математике читатель обнаружит причину этого немедленно. Метрика в пространстве-времени Минковского есть ds2 = c2dt2 – dx2 (где dx2 есть евклидова длина dx12 + dx22 + dx32), тогда как время, текущее по часам ("собственное" время), задается dτ2 = ds2/c2. Так что, очевидно, скорость через пространство-время так же определяется математически выражением ds/dτ, которое равно с.
8. S. Rudolf Carnap, "Autobiography," in The Philosophy of Rudolf Carnap, P.A. Schilpp, ed. (Chicago: Library of Living Philosophers, 1963), p. 37.
Глава 6
1. Отметим, что асимметрия, о которой идет речь – стрела времени – возникает из порядка, в котором события имеют место во времени. Вы могли бы также удивиться асимметрии в самом времени – например, как мы увидим в дальнейших главах, в соответствии с некоторыми космологическими теориями время могло иметь начало, но оно может не иметь конца. Имеются и другие понятия темпоральной асимметрии, но наше обсуждение здесь сосредоточивается на первом. Даже в этом случае до конца главы мы придем к заключению, что темпоральная асимметрия вещей во времени зависит от специальных условий в ранней истории вселенной, а потому связывает стрелу времени с аспектами космологии.
2. Для склонного к математике читателя позвольте мне более точно отметить, что означает симметрия по отношению к обращению времени, и указать на одно интригующее исключение, чье значение для обсуждаемых нами в этой главе проблем еще предстоит полностью осознать. Простейшее определение симметрии по отношению к обращению времени есть утверждение, что набор законов физики симметричен по отношению к обращению времени, если задано любое решение уравнений, скажем, S(t), тогда S(–t) тоже будет решением этих уравнений. Например, в ньютоновской механике с силами, которые зависят от положений частиц, если x(t) = (x1(t), x2(t), ..., x3n(t)) есть положения n частиц в трех пространственных измерениях, то тот факт, что x(t) является решением d2x(t)/dt2 = F(x(t)), подразумевает, что x(–t) также является решением уравнений Ньютона d2x(–t)/dt2 = F(x(–t)). Отметим, что x(–t) представляет движение частиц, которые проходят через те же самые положения, как и x(t), но в обратном порядке с противоположными скоростями.