Марио Бертолотти - История лазера
Такие «предварительные» теоретические модели выполняют двойную функцию. Во-первых, они дают определенную обобщенную основу для систематизации экспериментальных данных, играя роль эмпирических законов. Во-вторых, они играют важную роль в создании более фундаментальных теорий, являясь конструктивным посредником между теоретическими знаниями и эмпиризмом. Так, например, Максвелл в процессе построения теории электромагнетизма не рассматривал непосредственно экспериментальные данные, но использовал теоретические знания предыдущего уровня (закон Био—Савара, который определяет магнитное поле проводника с током, закон индукции Фарадея и др.) в качестве отобранного «эмпирического» материала.
Если мы с этой точки зрения рассмотрим положение, достигнутое в спектроскопии в 1880-х гг. мы увидим, что поиски законов, определяющихся спектральными линиями, были важнейшей проблемой того времени. В таких случаях ситуация приводит к результатам, что часто случается в развитии науки. Различные исследователи пытаются независимо решить одну и ту же проблему и находят одновременно одинаковые решения. Так и было в этом случае. Независимо от Ридберга, в 1890 г. два хорошо известных спектроскописта, Генрих Кайзер (1853—1940) и Карл Рунге (1856—1927), старались установить общие математические уравнения законов спектроскопии и предложили решения, которые горячо обсуждались, пока не стал превалирующим взгляд Ридберга, который и получил всеобщее признание к концу века.
Согласно Ридбергу, аналитическое выражение для спектров должно быть функцией целых чисел. Он стремился узнать, каков должен быть вид этой функции, и нашел одну, в которой обратные волновые числа зависели от обратных квадратов целых чисел. Когда Бальмер опубликовал свою формулу для атома водорода, оказалось, что она соответствует частному случаю выражения Ридберга.
С другой стороны, Кайзер и Рунге искали алгебраическое выражение, которое могло бы предсказать с высокой точностью обратные волновые числа в сериях, и нашли одно, в котором использовались обратные квадраты целых чисел и обратные четвертые степени целого числа. Хотя они и признавали, что Ридберг прав, утверждая, что их выражение просто одно из многих, которые можно выписать, они возражали, что их выражение наиболее точное. Тот факт, что Ридберг утверждал, что его соотношение имеет универсальную значимость для всех атомов, их не интересовал.
Ридберговское представление давало обратную величину длины волны атомного спектра в конкретных сериях в виде разницы между двумя «спектральными термами» (как их позднее стали называть). Каждый из них представляет универсальную константу (позднее названную «константой Ридберга»), деленную на квадрат суммы целого числа и константы, типичной для каждой серии. В этой формулировке был уже представлен «комбинационный принцип», позднее выраженный шведским ученым Вальтером Ритцем (1878-1909).
В то время предполагалось, что световые колебания, представляемые линиями спектра, производятся все вместе в атоме. В конце концов, в 1907 г. Артур Вильям Конвей (1875—1950), профессор математической физики в Дублине, дал правильное объяснение, согласно которому атом производит спектральные линии по одной во времени, так что получение полного спектра происходит от большого числа атомов. Согласно Конвею, испускание спектральной линии атомом должно происходить в ненормальном или возмущенном состоянии. Ситуация, при которой одиночный электрон в атоме стимулируется для получения колебаний с частотой, соответствующей спектральной линии, не продолжается бесконечно, но лишь то время, которое нужно электрону, чтобы испустить цуг колебаний.
Эти идеи были заново высказаны в 1910 г. П. В. Беваном (1875—1913), который также пришел к заключению, что спектральные явления следует объяснять участием большого числа атомов. Они в определенный момент времени находятся в разных состояниях, и каждый из атомов ответственен не за весь спектр, только за одну линию в нем.
«Комбинационный принцип», сформулированный В. Ритцем в 1908 г., был выведен из большого спектроскопического материала. Согласно ему, частоту каждой спектральной линии можно получить как разность между двумя термами — т.н. «спектральных термов», каждый из которых зависит от некоторого целого числа. С помощью этого принципа все линии в сериях можно было классифицировать систематическим образом.
Регулярности, открытые Бальмером в видимом спектре водорода, были обнаружены и в других областях спектра. Теодор Лайман (1874—1954), исследуя излучение водорода в ультрафиолетовой области, нашел в 1906 г., что серии линий, испускаемых в этой области, могут быть представлены формулой, подобной формуле Бальмера. Фридрих Пашен (1865-1947) получил в 1908 г. подобные результаты в инфракрасной области спектра. Позднее эти результаты были подтверждены и дополнены в 1922 г. американским астрономом Фрэнком П. Брэкеттом (1865—1953) и в 1924 г. Августом Г. Пфундом (1879-1948).
Все частоты f различных серий можно выразить универсальной формулой:
с/λ = f = const (l/m2 — 1/n2)
где с — скорость света в вакууме; n и m — два целых числа, которые удовлетворяют следующим условиям:
m = 1, n = 2,3,4, … серия Лаймана в УФ;
m =2, n = 3,4,5, ... серия Бальмера в видимой области;
m =3, n = 4,5,6, ... серия Пашена в ИК;
m =4, n = 5,6,7, ... серия Брэкетта в ИК;
m =5, n = 6,7,8, ... серия Пфунда в ИК.
Влияние магнитного поля на спектральные линии
В то время, когда были объяснены главные черты спектральных линий. В 1896 г. Питер Зееман (1865—1943) живший в Лейдене (Голландия) открыл, что магнитное поле способно воздействовать на частоты спектральных линий, испускаемых газом, помещенным в это поле.
Зееман проводил в Лейденском университете в 1893 г. исследования по изучению эффекта Керра, которые были предметом его докторской диссертации. Этот эффект касается действия магнитного поля на поляризацию света. В 1896 г., обсуждая свой первый эксперимент в работе, опубликованной в трудах Королевской академии в Амстердаме, он указывал, что его открытие было отталкивалось от результатов Фарадея, в 1854 г., открывшего влияние магнитного поля на плоскость поляризации линейно поляризованного света (этот эффект Фарадея сходен с эффектом Керра). Уже в то время Фарадей осознал, что свет и магнитное поле тесно связаны. Максвелл говорил, что Фарадей посвящал свои последние эксперименты изучению влияния магнитного поля на свет, испускаемый источником, помещенным в магнитное поле, но ничего не сообщил о результатах. Позднее другие исследователи пытались повторить этот эксперимент, но безуспешно.
Зееман был очень дотошным экспериментатором и полагал, что Фарадей не пришел к определенным результатам, потому что эффект был очень слабым. Поэтому он тщательно спланировал эксперимент и в 1896 г. получил положительный результат. Как это уже делалось Фарадеем, Зееман поместил пламя бунзеновской горелки с хлористым натрием в поле электромагнита и изучал спектр с помощью дифракционной решетки высокого разрешения. Он наблюдал D-линию натрия (которая на самом деле — дублет тесно расположенных линий) и увидел, что когда электромагнит включался, линия уширялась. Первоначально он думал, что это эффект влияния магнитного поля на температуру и плотность паров в пламени. Но последующие эксперименты показали влияние магнитного поля на D-линию натрия.
Используя улучшенное спектральное разрешение, он позднее установил, что эффект заключается в разделении линии испускания цинка или кадмия на две или три линии, в зависимости от направления наблюдения по отношению к ориентации магнитного поля (рис. 12).
Рис. 12. Примеры аномального (для цинка) и аномального (для дублета натрия) эффекта Зеемана
Как раз перед этим открытием Г.А. Лоренц (1853—1928) начал создавать теорию свойств электронов, которая позднее была опубликована в его знаменитой книге «Теория электронов» (Лейпциг, 1909). Он сразу же объяснил этот эффект, рассматривая электроны, связанные в атомах квазиупругим образом.
Лоренц также работал в Лейденском университете, где он получил докторскую степень в 1875 г. В возрасте двадцати четырех лет, в 1877 г., он был назначен заведующим кафедрой теоретической физики в Голландии.
Лоренц имел обширные интересы в физике и математике, но его наиболее значительным достижением было развитие электромагнитной теории Максвелла до этапа, где стала очевидной необходимость радикального изменения основ физики, что инспирировало теорию относительности Эйнштейна. Он объяснил отрицательный результат 1887 г. опыта Альберта А. Майкельсона (1852—1931) и Эдварда В. Морли (1838— 1923). В этом эксперименте пытались «увидеть», не распространяется ли свет с разной скоростью в направлениях по движению Земли в пространстве и перпендикулярном ему. Лоренц предположил, что материальные тела сокращаются в размере по направлению своего движения. В 1904 г. он формализовал эту гипотезу, известную как «лоренцовское сокращение», дав математическую форму этого преобразования. Эти преобразования Лоренца сыграли очень важную роль в теории Эйнштейна, которая теоретически укрепила их основу.