KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Александр Китайгородский - Физика для всех. Движение. Теплота

Александр Китайгородский - Физика для всех. Движение. Теплота

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Китайгородский, "Физика для всех. Движение. Теплота" бесплатно, без регистрации.
Перейти на страницу:

На линии пути нанесены стрелки, соответствующие отрезкам, которые тело проходит за одну, две, три и т.д. секунды. За каждую секунду тело проходит одинаковый путь, так как речь идет о равномерном и прямолинейном движении (с точки зрения неподвижного наблюдателя).



Представьте себе, что движущееся тело – это свежевыкрашенный катящийся по диску шар. Какой след останется на диске? Наше построение дает ответ на этот вопрос. Отмеченные окончаниями стрелок точки с пяти рисунков перенесены на один чертеж. Остается соединить эти точки плавной кривой. Результат построения нас не удивит: прямолинейное и равномерное движение выглядит с точки зрения вращающегося наблюдателя криволинейным. Обращает на себя внимание такое правило: движущееся тело отклоняется на всем пути вправо по ходу движения. Предположим, что диск вращается по часовой стрелке, и предоставим читателю повторить построение. Оно покажет, что в этом случае движущееся тело с точки зрения вращающегося наблюдателя отклоняется влево по ходу движения.

Мы знаем, что во вращающихся системах появляется центробежная сила. Однако ее действие не может служить причиной искривления пути – ведь она направлена вдоль радиуса. Значит, во вращающихся системах кроме центробежной силы возникает еще дополнительная сила. Ее называют силой Кориолиса.

Почему же в предшествующих примерах мы не сталкивались с силой Кориолиса и превосходно обходились одной центробежной? Причина в том, что мы до сих пор не рассматривали движение тел с точки зрения вращающегося наблюдателя. А сила Кориолиса появляется только в этом случае. На тела, которые покоятся во вращающейся системе, действует лишь центробежная сила. Стол вращающейся лаборатории привинчен к полу – на него действует одна центробежная сила. А на мячик, который упал со стола и покатился по полу вращающейся лаборатории, кроме центробежной силы действует и сила Кориолиса.

От каких величин зависит значение силы Кориолиса? Его можно вычислить, но расчеты слишком сложны для того, чтобы приводить их здесь. Опишем поэтому лишь результат вычислений.

В отличие от центробежной силы, значение которой зависит от расстояния до оси вращения, сила Кориолиса не зависит от положения тела. Ее величина определяется скоростью движения тела, и при этом не только величиной скорости, но и ее направлением по отношению к оси вращения. Если тело движется вдоль оси вращения, то сила Кориолиса равна нулю. Чем больше угол между вектором скорости и осью вращения, тем больше сила Кориолиса; максимальное значение сила приме́т при движении тела под прямым углом к оси.

Как мы знаем, вектор скорости всегда можно разложить на какие-либо составляющие и рассмотреть раздельно два возникающих движения, в которых одновременно участвует тело.

Если разложить скорость тела на составляющие и – параллельную и перпендикулярную к оси вращения, то первое движение не будет подвержено действию силы Кориолиса. Значение силы Кориолиса Fk определится составляющей скорости . Расчеты приводят к формуле



Здесь m – масса тела, а n – число оборотов, совершаемых вращающейся системой за единицу времени. Как видно из формулы, сила Кориолиса тем больше, чем быстрее вращается система и чем быстрее движется тело.

Расчеты устанавливают и направление силы Кориолиса. Эта сила всегда перпендикулярна к оси вращения и к направлению движения. При этом, как уже говорилось выше, сила направлена вправо по ходу движения в системе, вращающейся против часовой стрелки.

Действием силы Кориолиса объясняются многие интересные явления, происходящие на Земле. Земля – шар, а не диск. Поэтому проявления сил Кориолиса сложнее.

Эти силы будут сказываться как на движении вдоль земной поверхности, так и при падении тел на Землю.

Падает ли тело строго по вертикали? Не вполне. Только на полюсе тело падает строго по вертикали. Направление движения и ось вращения Земли совпадают, поэтому сила Кориолиса отсутствует. Иначе обстоит дело на экваторе; здесь направление движения составляет прямой угол с земной осью. Если смотреть со стороны северного полюса, то вращение Земли представится нам против часовой стрелки. Значит, свободно падающее тело должно отклониться вправо по ходу движения, т.е. на восток. Величина восточного отклонения, наибольшая на экваторе, уменьшается до нуля с приближением к полюсам.

Подсчитаем величину отклонения на экваторе. Так как свободно падающее тело движется равномерно-ускоренно, то сила Кориолиса растет по мере приближения к земле. Поэтому мы ограничимся примерным подсчетом. Если тело падает с высоты, скажем, 80 м, то падение продолжается около 4 с (по формуле t = sqrt(2h/g) ). Средняя скорость при падении будет равна 20 м/с.

Это значение скорости мы и подставим в формулу кориолисова ускорения 4πnv. Значение n = 1 оборот за 24 часа переведем в число оборотов в секунду. В 24 часах содержится 24·3600 секунд, значит, n равно 1/86400 об/с и, следовательно, ускорение, которое создает сила Кориолиса, равно π/1080 м/с2. Путь, пройденный с таким ускорением за 4 с, равен (1/2)·(π/1080)·42 = 2,3 см. Это и есть величина восточного отклонения для нашего примера. Точный расчет, учитывающий неравномерность падения, дает несколько иную цифру – 3,1 см.

Если отклонение тела при свободном падении максимально на экваторе и равно нулю на полюсах, то обратную картину мы будем наблюдать в случае отклонения под действием кориолисовой силы тела, движущегося в горизонтальной плоскости.

Горизонтальная площадка на северном или южном полюсах ничем не отличается от вращающегося диска, с которого мы начали изучение силы Кориолиса. Тело, движущееся по такой площадке, будет отклоняться силой Кориолиса вправо по ходу движения на северном полюсе и влево по ходу движения на южном. Читатель без труда подсчитает, пользуясь той же формулой кориолисова ускорения, что пуля, выпущенная из ружья с начальной скоростью 500 м/с, отклонится от цели в горизонтальной плоскости за одну секунду (т.е. на пути 500 м) на отрезок, равный 3,5 см.

Но почему же отклонение в горизонтальной плоскости на экваторе должно равняться нулю? Без строгих доказательств понятно, что так должно быть. На северном полюсе тело отклоняется вправо по движению, на южном – влево, значит, посередине между полюсами, т.е. на экваторе, отклонение будет равно нулю.

Вспомним опыт с маятником Фуко. Маятник, колеблющийся на полюсе, сохраняет плоскость своих колебаний. Земля, вращаясь, уходит из-под маятника. Такое объяснение дает опыту Фуко звездный наблюдатель. А наблюдатель, вращающийся вместе с земным шаром, объяснит этот опыт силой Кориолиса. Действительно, сила Кориолиса направлена перпендикулярно к земной оси и перпендикулярно к направлению движения маятника; иначе говоря, сила перпендикулярна к плоскости колебания маятника и будет эту плоскость непрерывно поворачивать. Можно сделать так, чтобы конец маятника вычерчивал траекторию движения. Траектория представляет собой «розетку», показанную на рис. 27. На этом рисунке за полтора периода колебания маятника «Земля» поворачивается на четверть оборота. Маятник Фуко поворачивается много медленнее. На полюсе плоскость колебания маятника за одну минуту повернется на 1/4 градуса. На северном полюсе плоскость будет поворачиваться вправо по ходу маятника, на южном – влево.



На широтах центральной Европы эффект Кориолиса будет несколько меньше, чем на экваторе. Пуля в примере, который мы только что привели, отклонится не на 3,5 см, а на 2,5 см. Маятник Фуко повернется за одну минуту примерно на 1/6 долю градуса.

Должны ли учитывать силу Кориолиса артиллеристы? Пушка Берта, из которой немцы вели обстрел Парижа во время первой мировой войны, находилась в 110 км от цели. Отклонение Кориолиса достигает в этом случае 1600 м. Это уже не маленькая величина.

Если летающий снаряд будет отправлен на большое расстояние без учета силы Кориолиса, то он значительно отклонится от курса. Этот эффект велик не потому, что велика сила (для снаряда в 10 т, имеющего скорость 1000 км/ч, сила Кориолиса будет около 25 кГ), а потому, что сила действует непрерывно длительное время.

Конечно, влияние ветра на неуправляемый снаряд может быть не менее значительным. Поправка к курсу, которая дается пилотом, обусловлена действием ветра, эффектом Кориолиса и несовершенством самолета или самолета-снаряда.

Какие специалисты, кроме авиаторов и артиллеристов, должны принять эффект Кориолиса во внимание? К ним относятся, как ни странно, и железнодорожники. На железной дороге один рельс под действием кориолисовой силы истирается изнутри заметно больше другого. Нам ясно, какой именно: в северном полушарии это будет правый рельс (по ходу движения), в южном – левый. Лишены хлопот по этому поводу лишь железнодорожники экваториальных стран.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*