KnigaRead.com/

Яков Гегузин - Живой кристалл

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Яков Гегузин, "Живой кристалл" бесплатно, без регистрации.
Перейти на страницу:

   

Если теперь опять от атомов перейти к такси, то полученный результат означает, что среднее расстояние между многими такси и таксомоторным парком, из которого они вышли одновременно, со временем изменяется по закону ≈ t1/2 . Последнюю формулу удобно переписать в другом виде:


X2n=Dt


Величина D = а2 называется коэффициентом самодиффузии.

При строгом расчете, когда учитываются все шесть возможных перемещений атома (вперед и назад вдоль каждого из трех направлений в пространстве), оказывается, что D = а2/6τ.

А теперь модельный эксперимент «блуждающие точки». Заставьте хаотически блуждать 10 точек, потребовав, чтобы каждая из них двигалась вдоль прямой: когда брошенная монета падает «орлом» — шаг вправо (например, сантиметровый), «решеткой» — такой же шаг влево. После того как все точки сделают одинаковое число шагов, надо величину смещения (в сантиметрах) каждой из них возвести в квадрат, эти квадраты просуммировать и разделить на число точек, т. е. на 10. Так будет найдена величина X2n. Затем такой подсчет надо повторить при нескольких других значениях числа шагов, вплоть до п = 100. Построив график зависимости X2n от п, мы убедимся, что, как это и предсказывает формула, которую мы записали, поверив в ее справедливость, X2n линейно увеличивается с ростом п. Такой эксперимент мы сделали, и его результаты изобразили на рисунках. Ушло на это два часа, трудились вдвоем, я бросал монету, товарищ вел записи, затем мы построили график зависимости X2n от п.

Хотелось бы в координатах X2n и п получить прямую, согласно формуле именно прямая и должна быть. На нашем графике точки, не ложась точно на прямую, рассыпаны вблизи нее. Это естественно, так как слишком мало точек и шагов, слишком мала статистика для того, чтобы вероятностные законы обрели точность. Однако и в нашем опыте (всего 10 точек, каждая по 100 шагов) закон X2n ~ п себя проявил.

Итак, оказывается хаос — не хаос! В нем скрыты строгие закономерности, которые себя отчетливо проявляют в процессе хаотических блужданий атомов в кристалле — тем отчетливее, чем больше атомов и чем большее число неупорядоченных скачков совершает каждый из них.

Нам, вглядывающимся в непременные признаки жизни кристалла, конечно же, следует познакомиться с количественными характеристиками того процесса, который мы называем «обычная классическая самодиффузия» или «бесцельное блуждание атомов в кристалле». Будем говорить главным образом о вакансиях, твердо помня при этом, как взаимообусловлены перемещения вакансий и атомов.

Совокупность вакансий в кристалле может быть уподоблена идеальному газу. Аналогия между газом реальных молекул или атомов и газом «атомов пустоты» имеет вполне разумные основания. Подобно молекулам идеального газа, вакансии в кристаллической решетке находятся друг от друга на значительных расстояниях и поэтому практически между собой не взаимодействуют. Иногда они сталкиваются, после чего уходят в разные стороны.

Для того чтобы пользоваться этой аналогией, следует убедиться, что, подобно идеальному газу, газ вакансий разрежен. Это основное условие, которому должен удовлетворять идеальный газ. Оценим среднее расстояние между вакансиями . Если в единице объема находится пυ вакансий, то

т. е. вакансии в среднем удалены друг от друга на двадцать межатомных расстояний. Приблизительно на таком же расстоянии друг от друга находятся молекулы в воздухе при атмосферном давлении. С понижением температуры концентрация вакансий сυ быстро уменьшается, среднее расстояние между ними увеличивается, газ вакансий становится еще более разреженным, а это означает, что основное условие идеальности оказывается выполненным.

Итак, совокупность вакансий — разреженный газ. Однако частицы этого газа движутся не в свободном пространстве, а в кристаллической решетке, и это определяет характер их движения. Между двумя столкновениями они движутся не по прямой, а по очень запутанной ломаной линии, состоящей из прямолинейных отрезков — они определяются расстояниями между соседними позициями в кристаллической решетке, которые зависят от ее структуры.

Обсудим характеристики газа вакансий в каком-нибудь определенном кристалле, например в золоте, имеющем следующие характеристики: решетка кубическая, расстояние между двумя позициями, где могут находиться атомы, а ≈ 3 • 10-8 см, температура плавления 1336 К. Период тепловых колебаний атома в узле решетки τ0 ≈ 10-13 с. Допустим, что температура кристалла Т = 1330 К, т. е. на 6 К ниже точки плавления, и проследим при этой температуре судьбу вакансии. Ее состояние характеризуется следующими цифрами:

 

Природе почему-то понадобилось, чтобы вакансия отличалась беспримерной суетливостью!

Можно бы вычислить еще некоторые характеристики вакансий. Например, установить, что, пройдя по прямой в среднем 3 мкм, вакансия столкнется с себе подобной, что такие столкновения вакансия испытывает приблизительно сто раз в секунду, что две столкнувшиеся вакансии совершат совместно приблизительно десять периодов колебаний и лишь после этого порознь будут продолжать свой путь.

Атомы ведут себя спокойнее вакансий. Но и они миллион раз в секунду меняют место оседлости и движутся со скоростью ≈ 1 м/ч.

С понижением температуры коэффициент диффузии будет уменьшаться, а время «оседлой жизни» увеличиваться. И то, и другое будет происходить быстро — но экспоненциальному закону, и степень удивительности приведенных цифр будет уменьшаться. И все равно они — эти цифры — достаточное основание, чтобы слова «кристалл» и «мертвое тело» не употреблялись как синонимы.


МИГАЮЩИЕ ВАКАНСИИ

Исповедующие традиционную убежденность в том, что популяризовать можно лишь прочно укрепившиеся в науке идеи и надежно установленные факты, сочтут этот очерк преждевременным, так как он посвящен идее, пребывающей в младенческом возрасте, еще не испытанной временем. Она не успела себя широко зарекомендовать, не оказала заметного влияния на развитие физики кристаллов. Получила косвенную апробацию лишь в нескольких экспериментах. И все же мне она представляется настолько жизнеспособной, что, не очень рискуя ошибиться, хочу предсказать ей успехи в будущем. А это мне, не придерживающемуся традиционного взгляда на область популяризации, кажется вполне достаточным основанием, чтобы о новорожденной идее рассказать в популярной книге.

Речь идет о «мигающей вакансии», образе, который родился в представлении физика, исследовавшего влияние электронного облучения на изменение некоторых физических свойств рыхлых кристаллов. «Рыхлых» — это значит таких, в решетке которых очень много незамещенных позиций. «Рыхлых» — это значит обладающих такой решеткой, при которой в структуре много пустоты в виде межузельных пространств.

Впрочем, пожалуй, о том, что было вначале, удобнее будет рассказать в конце очерка, а сейчас расскажу о том, что такое мигающая вакансия.

Обсуждая «пару Френкеля», мы обратили внимание на то, что пока атом, перешедший из узла в междоузлие, не ушел от этого узла на расстояние более атомного, он может с большей вероятностью возвратиться в покинутый им узел. «Родственная связь» между атомом и узлом окончательно не прервана, и дефект «по Френкелю» еще не возник. Мыслимы, однако, ситуации или, точнее говоря, мыслимы такие кристаллы, в которых родственная связь между узлом и атомом, покинувшим узел, сохраняется и тогда, когда атом ушел на значительное расстояние от узла. Сохранив родственную связь, он охотно в этот узел возвращается. Представим себе такую ситуацию. Допустим, что, покинув узел, атом превратился в ион с зарядом е+, а узел при этом оказался имеющим заряд е- . Допустим, что атом, покинув узел, ушел от него на расстояние r0. Покинул — это значит выпрыгнул вследствие тепловой флуктуации или оказался вышибленным какой-либо частицей, которая влетела в кристалл, имея большую энергию. Неважно, как покинул, а важно, что покинул! Оказавшись на расстоянии r0 , ион испытывает кулоновское притяжение к оставленной им позиции с силой, определяемой законом Кулона: F1 = е2/εr02 (ε — диэлектрическая проницаемость кристалла). Под влиянием этой силы ион мог бы возвратиться в покинутую им позицию, этому, однако, препятствует необходимость преодолеть энергетический барьер, который обусловлен наличием новых соседей данного иона в решетке. Если высота этого энергетического барьера (U0, а расстояние между соседями в решетке a, то силу, удерживающую ион в его новом положении, легко вычислить, учтя, что произведение силы на путь равно выполненной работе (или затраченной энергии): F2а = U0 , т. е. F2 = U0 /а. Если окажется, что сила F2 < F1 , то, невзирая на тормозящее влияние новых соседей, ион все-таки возвратится в покинутую им позицию. Сравнивая величины F1 и F2 , легко убедиться, что родственная связь между ионом и вакантной позицией не будет нарушена, если величина r0 удовлетворяет условию

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*