KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Г. Шипов - Теория физического вакуума в популярном изложении

Г. Шипов - Теория физического вакуума в популярном изложении

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Г. Шипов, "Теория физического вакуума в популярном изложении" бесплатно, без регистрации.
Перейти на страницу:

Но даже в случае, когда мы имеем две фундаментальные теории такие, например, как классическая электродинамика Максвелла-Лоренца и теория гравитации Эйнштейна, их не формальное объединение невозможно. Действительно, теория Максвелла-Лоренца рассматривает электромагнитное поле на фоне плоского пространства, в то время как в теории Эйнштейна гравитационное поле имеет геометрическую природу и рассматривается как искривление пространства. Чтобы объединить эти две теории надо: либо рассматривать оба поля как заданные на фоне плоского пространства (подобно электромагнитному полю в электродинамике Максвелла-Лоренца), либо оба поля свести к кривизне пространства (подобно гравитационному полю в теории гравитации Эйнштейна).

Из уравнений физического вакуума следуют полностью геометризированные уравнения Эйнштейна (B.1), которые не формальным образом объединяют гравитационные и электромагнитные взаимодействия, поскольку в этих Уравнениях как гравитационные, так и электромагнитные поля оказываются геометризированными. Точное решение этих уравнений приводит к объединенному электро-гравитационному потенциалу, который описывает объединенные электро-гравитационные взаимодействия не формальным образом.

Решение, которое описывает сферически симметричное стабильное вакуумное возбуждение с массой М и зарядом Ze (т.е. частицу с этими характеристиками) содержит две константы: ее гравитационный радиус rg и электромагнитный радиус re . Эти радиусы определяют кручение Риччи и кривизну Римана, порожденные массой и зарядом частицы. Если масса и заряд обращаются в нуль (частица уходит в вакуум), то оба радиуса исчезают. В этом случае кручение и кривизна пространства Вайценбека так же обращаются в нуль, т.е. пространство событий становится плоским (абсолютный вакуум).

Гравитационный rg и электромагнитный re радиусы образуют трехмерные сферы, с которых начинается гравитационное и электромагнитное поля частиц (см. рис. 24). Для всех элементарных частиц электромагнитный радиус много больше гравитационного. Например, для электрона rg = 9,84xl0-56, а re = 5,6х10-13 см. Хотя эти радиусы имеют конечную величину, плотность гравитационной и электромагнитной материи частицы (это следует из точного решения уравнений вакуума) сосредоточена в точке. Поэтому в большинстве экспериментов электрон ведет себя как точечная частица.



Рис. 24. Рожденная из вакуума сферически симметричная частица с массой и зарядом состоит из двух сфер с радиусами rg и re. Буквы G и Е обозначают статическое гравитационное и электромагнитное поля соответственно.


3.3. Объединение гравитационных, электромагнитных и сильных взаимодействий.

Большим достижением теории физического вакуума является целый ряд новых потенциалов взаимодействия, полученных из решения уравнений вакуума (А) и (В). Эти потенциалы появляются как дополнение к кулон-ньютоновскому взаимодействию. Один из таких потенциалов убывает с расстоянием быстрее, чем 1/r, т.е. порожденные им силы действуют (подобно ядерным) на малых расстояниях. Кроме того, этот потенциал отличен от нуля, даже тогда, когда заряд частицы равен нулю (рис. 25). Подобное свойство зарядовой независимости ядерных сил давно обнаружено в эксперименте.



Рис. 25. Потенциальная энергия ядерного взаимодействия, найденная из решения уравнений вакуума. Соотношение между ядерным и электромагнитным радиусами rN = |re|/2,8.



Рис. 26. Теоретические вычисления, полученные из решения уравнений вакуума (сплошная кривая), достаточно хорошо подтверждаются экспериментами по электро-ядерному взаимодействию протонов и ядер меди.


На рис. 25 представлена потенциальная энергия взаимодействия нейтрона (заряд нейтрона равен нулю) и протона с ядром. Для сравнения приведена кулоновская потенциальная энергия отталкивания между протоном и ядром. Из рисунка видно, что на малых расстояниях от ядра кулоновское отталкивание сменяется ядерным притяжением, которое описывается новой константой rN - ядерным радиусом. Из экспериментальных данных удалось установить, что величина этой константы порядка 10-14 см. Соответственно силы, порождаемые новой константой и новым потенциалом, начинают действовать на расстояниях () от центра ядра. Как раз на этих расстояниях начинается действие ядерных сил.


= (100 - 200)rN = 10-12 см.


На рис. 25 ядерный радиус определяется соотношением rN = |re|/2,8 где вычисленное для процесса взаимодействия протона и ядра меди значение модуля электромагнитного радиуса равно: |re| = 8,9х10-15 см.

На. рис. 26 представлена экспериментальная кривая, описывающая рассеяние протонов с энергией 17 Мэв на ядрах меди. Сплошной линией на этом же рисунке обозначена теоретическая кривая, полученная на основе решений уравнений вакуума. Хорошее согласие между кривыми говорит о том, что найденные из решения вакуумных уравнений короткодействующий потенциал взаимодействия с ядерным радиусом rN = 10-15 см. Здесь ничего не было сказано о гравитационных взаимодействиях, поскольку для элементарных частиц они гораздо слабее ядерных и электромагнитных.

Преимущество вакуумного подхода в объединенном описании гравитационных, электромагнитных и ядерных взаимодействий перед принятыми в настоящее время состоит в том, что наш подход фундаментален и не требует введения ядерных потенциалов «руками».

3.4. Связь между слабыми и торсионными взаимодействиями.

Под слабыми взаимодействиями обычно подразумевают процессы с участием одной из самых загадочных элементарных частиц - нейтрино. У нейтрино нет массы и заряда, а имеется только спин - собственное вращение. Эта частица не переносит ничего, кроме вращения. Таким образом, нейтрино представляет собой одну из разновидностей динамического торсионного поля в чистом виде.

Простейшим из процессов, в котором проявляются слабые взаимодействия является распад нейтрона (нейтрон неустойчив и имеет среднее время жизни 12 мин) по схеме:


n ® p+ + e- + v


где p+ - протон, e- - электрон, v - антинейтрино. Современная наука считает, что электрон и протон взаимодействуют между собой по закону Кулона как частицы, имеющие противоположные заряды. Они не могут образовать долго живущую нейтральную частицу - нейтрон с размерами порядка 10-13 см, поскольку электрон под действием силы притяжения должен мгновенно «упасть на протон». Кроме того, даже если и возможно было бы предположить, что нейтрон состоит из противоположно заряженных частиц, то при его распаде должно было бы наблюдаться электромагнитное излучение, что привело бы к нарушению закона сохранения спина. Дело в том, что нейтрон, протон и электрон имеют спин +1/2 или -1/2 каждый.

Предположим, что первоначальный спин нейтрона был равен -1/2. Тогда суммарный спин электрона, протона и фотона тоже должен бы быть равен -1/2. Но суммарный спин электрона и протона может иметь значения -1, 0, +1, а у фотона спин может быть -1 или +1. Следовательно, спин системы электрон-протон-фотон может принимать значения 0, 1, 2, но не как -1/2.

Решения уравнений вакуума для частиц, обладающих спином, показали, что для них существует новая константа rs - спиновый радиус, которая описывает торсионное поле вращающейся частицы. Это поле порождает торсионные взаимодействия на малых расстояниях и позволяет по-новому подойти к проблеме образования нейтрона из протона, электрона и антинейтрино.

На рис. 27 представлены качественные графики потенциальной энергии взаимодействия обладающего спином протона с электроном и позитроном, полученные из решения вакуумных уравнений. Из графика видно, что на расстоянии порядка


rs = |re|/3 = 1,9x10-13 см.


от центра протона существует «торсионная яма», в которой может достаточно долгое время находиться электрон, когда он совместно с протоном образует нейтрон. Электрон не может упасть на вращающийся протон, поскольку торсионная сила отталкивания на малых расстояниях превосходит кулоновскую силу притяжения. С другой стороны, торсионная добавка к кулоновской потенциальной энергии обладает аксиальной симметрией и очень сильно зависит от ориентации спина протона. Эта ориентация задана углом q между направлением спина протона и радиусом-вектором, проведенным в точку наблюдения,

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*