KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Брайан Грин - Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Брайан Грин, "Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории" бесплатно, без регистрации.
Перейти на страницу:

3

Steven Weinberg, «Dreams of a Final Theory». New York: Pantheon, 1992, p. 52. (Рус. пер.: Вайнберг С. «Мечты об окончательной теории». М.: URSS, 2008.)

4

Интервью с Эдвардом Виттеном, 11 мая 1998 г.

5

Для читателей, любящих математику, заметим, что эти наблюдения могут быть выражены в количественной форме. Например, если движущиеся световые часы имеют скорость υ, а фотон совершает своё движение «туда и обратно» за t секунд (по показаниям неподвижных часов), то за время, которое потребуется фотону, чтобы вернуться к нижнему зеркалу, световые часы пройдут расстояние υt. Используя теорему Пифагора, можно рассчитать длину пути по диагонали на рис. 2.3. Она составит , где h представляет собой расстояние между зеркалами световых часов (равное 15 см). Суммарная длина двух диагональных отрезков будет равна . Поскольку скорость света является константой, которая обычно обозначается c, фотону потребуется  секунд на то, чтобы пройти оба диагональных отрезка. Таким образом, у нас есть уравнение , из которого мы можем найти значение . Чтобы избежать недоразумений, обозначим это значение как , индекс у t в этом выражении указывает на то, что мы измеряем продолжительность одного цикла для движущихся часов. С другой стороны, время цикла для неподвижных часов tнеподв можно рассчитать по формуле tнеподв = 2h/c. Используя несложные алгебраические преобразования, получим выражение , которое непосредственно свидетельствует о том, что продолжительность тика движущихся часов больше, чем у неподвижных. Это означает, что для промежутка времени между двумя выбранными событиями движущиеся часы совершат меньшее число тиков, чем неподвижные, т. е. для движущегося наблюдателя пройдёт меньше времени.

6

Если опыт с ускорителем частиц, понятный узкому кругу специалистов, не выглядит для вас очень убедительным, приведём ещё один пример. В октябре 1971 г. Дж. С. Хафеле, работавший в то время в университете Вашингтона в Сент-Луисе и Ричард Китинг из Военно-морской лаборатории США провели эксперимент, в ходе которого цезиевые атомные часы провели около 40 часов на борту самолётов, совершавших коммерческие авиарейсы. После того, как был учтён ряд тонких эффектов, связанных с действием гравитации (которая будет обсуждаться в следующей главе), расчёты с использованием специальной теории относительности показали, что показания движущихся часов должны быть меньше показаний неподвижных часов на несколько сотен миллиардных долей секунды. Именно такие данные и получили Хафеле и Китинг: для движущихся часов время действительно замедляет ход.

7

Для читателей, имеющих математическую подготовку, заметим, что по 4-вектору положения в пространстве-времени можно построить 4-вектор скорости

где τ — собственное время, определяемое соотношением

Тогда «скорость в пространстве-времени» будет представлять собой величину 4-вектора u,

которая равна скорости света c. Теперь уравнение

можно переписать в форме

Это показывает, что увеличение скорости тела в пространстве должно сопровождаться уменьшением величины /dt, которая представляет собой скорость объекта во времени (скорость, с которой идут его собственные часы по отношению к скорости наших неподвижных часов dt).

8

Isaac Newton, «Sir Isaac Newton’s Mathematical Principle of Natural Philosophy and His System of the World», trans. A. Motte and Florian Cajori. Berkeley: University of California Press, 1962, v. I, p. 634. (В рус. пер. см.: письмо Ньютона архиепископу Бентли от 25 февраля 1693 г. // Письма Ньютона и Ньютону. М.: ВИЕТ, 1993, № 1, с. 33–45.)

9

Цитируется по книге: Albrecht Fölsing, «Albert Einstein». New York: Viking, 1997, p. 315.

10

John Stachel, «Einstein and the Rigidly Rotating Disk». Опубликовано в «General Relativity and Gravitation», ed. A. Held. New York: Plenum, 1980, p. 1.

11

Анализ аттракциона «Верхом на торнадо» или «жёсткого вращающегося диска», как он называется на более профессиональном языке, может легко привести к недоразумениям. Так, например, и по сей день нет общего согласия по ряду деталей этого примера. В тексте мы следовали духу анализа, выполненного самим Эйнштейном; в примечании мы, оставаясь на той же точке зрения, постараемся пояснить некоторые особенности, которые могут привести к недоразумениям. Во-первых, может показаться непонятным, почему длина окружности колеса не испытает лоренцевского сокращения в той же мере, что и линейка: в этом случае результат, полученный Слимом, совпадал бы с первоначальным. Здесь следует иметь в виду, что мы всё время считали, что колесо непрерывно вращается и никогда не рассматривали его в состоянии покоя. Таким образом, с точки зрения неподвижных наблюдателей, единственное различие между измерениями длины окружности и измерениями Слима будет состоять в том, что линейка Слима испытала лоренцевское сокращение; колесо вращалось и во время наших измерений, и тогда, когда мы наблюдали за измерениями Слима. Видя, что линейка Слима испытала сокращение, мы понимали, что ему придётся приложить её большее число раз, чтобы пройти по всей длине окружности и, следовательно, он получит большее значение, чем мы. Лоренцевское сокращение окружности колеса можно установить, только сравнив результаты измерений на покоящемся и вращающемся колесе, однако такое сравнение нас не интересовало.

Во-вторых, хотя нам и не требовалось анализировать аттракцион в состоянии покоя, у вас может остаться вопрос, а что случится с колесом, когда оно замедлит своё движение и остановится? Может показаться, что в этом случае следует учитывать изменение длины окружности при изменении скорости вращения, вызванное сокращением Лоренца. Но как можно согласовать это с неизменным радиусом? Это тонкая проблема, решение которой опирается на тот факт, что в реальном мире не существует абсолютно жёстких тел. Тела могут растягиваться и изгибаться в ответ на испытываемое ими растяжение или сжатие. Если этого не произойдёт, то, как указал Эйнштейн, диск, изготовленный путём охлаждения вращающейся отливки, может разрушиться при изменении скорости вращения. Более подробно история с жёстким вращающимся диском описана в работе Стахеля (John Stachel, «Einstein and the Rigidly Rotating Disk». Опубликовано в «General Relativity and Gravitation», ed. A. Held. New York: Plenum, 1980.).

12

Цитата Германа Минковского взята из работы: Albrecht Fölsing, «Albert Einstein». New York: Viking, 1997, p. 189.

13

Интервью с Джоном Уилером, 27 января 1998 г.

14

В середине XIX в. французский учёный Урбен Жан-Жозеф Леверье установил, что орбита планеты Меркурий немного отклоняется от орбиты, по которой она должна вращаться вокруг Солнца в соответствии с ньютоновским законом всемирного тяготения. В течение более чем полувека предлагались самые разные объяснения так называемой аномальной прецессии перигелия (на обычном языке, в крайних точках своей орбиты Меркурий оказывался не в том месте, в котором он должен был находиться согласно теории Ньютона). В качестве возможных причин рассматривалось гравитационное влияние неизвестной планеты или пояса астероидов, влияние неизвестного спутника, воздействие межзвёздной пыли, сплюснутость Солнца, однако ни одно из этих объяснений не получило общего признания. В 1915 г. Эйнштейн рассчитал прецессию перигелия Меркурия с помощью уравнений только что открытой им общей теории относительности. Он получил результат, который по его собственному свидетельству заставил его сердце учащённо биться: значение, полученное с помощью общей теории относительности, в точности совпадало с экспериментальными данными. Этот успех, несомненно, был одной из важных причин, заставивших Эйнштейна поверить в свою теорию, но большинство других исследователей ожидало предсказания новых явлений, а не объяснения уже известных аномалий. Более подробно эта история описана в книге: Abraham Pais, «Subtle Is the Lord: The Science and the Life of Albert Einstein». New York: Oxford University Press, 1982. (Рус. пер.: Пайс А. «Научная деятельность и жизнь Альберта Эйнштейна». М.: Наука, Физматлит, 1989.)

15

Robert P. Crease and Charles C. Mann, «The Second Creation». New Brunswick, N. J.: Rutgers University Press, 1996, p. 39.

16

Richard Feynman, «The Character of Physical Law». Cambridge, Mass.: MIT Press, 1965, p. 129. (Рус. пер.: Фейнман Р. «Характер физических законов». М.: Мир, 1968.)

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*