Дэйв Голдберг - Вселенная.Руководство по эксплуатации
Хайд видит на дальнем экране рисунок из нескольких полос, который показывает, что фотонный луч и в самом деле ведет себя как волна. Попадающие в аппарат фотоны с чем-то интерферируют. Но ведь луч настроен так, что выпускает фотоны по одному. Единственное логическое объяснение — что фотоны интерферируют сами с собой. Каждый фотон проходит сквозь обе щели одновременно. Фрост ошибался. Если ты фотон, то тебе по силам пройти по обеим дорогам, а не только по той, которая покажется нехоженой.
Мы знаем, что фотон умеет вести себя и как волна, и как частица. Понимание, что фотон способен проявлять оба качества, не объясняет, откуда он знает, когда проявлять какое. В 1978 году Джон Арчибальд Уилер из Принстонского университета предложил интересный опыт, который позволил увидеть, как фотоны поведут себя в опыте с двойной щелью, если мы изменим правила игры на полдороге. «Представим себе,— подумал Уиллер,— что задний экран можно убрать, а за ним на некотором расстоянии стоят два телескопчика, каждый из которых точно нацелен на одну из двух щелей».
Если убрать экран, то, глядя в тот или иной телескопчик, мы точно скажем, в какую щель проскочил тот или иной фотон. А значит, каждому фотону придется проскакивать в определенную щель, а не в обе. Иначе говоря, можно заставить фотоны вести себя как частицы, если убрать экран,— а значит, превратить экспериментатора обратно из Хайда в Джекила. Если мы поставим экран на место, то фотоны начнут снова вести себя как волны — и снова воцарится мерзопакостный Хайд.
Тот факт, что мы повлияем на поведение фотонов, добавляя или убирая экран, сам по себе странноватый, но дальнейшее предположение Уилера делает его еще более странным. Что будет, если убрать экран после того, как отдельный фотон пройдет первый экран — тот, что со щелями? «Опыт с отложенным выбором» позволит нам превращать свет из волны в частицу и обратно в любой момент эксперимента.
Иначе говоря, уже после того, как фотон пролетел сквозь экран со щелями, мы можем сделать так, чтобы он пролетел только сквозь одну щель17 — и для этого нужно всего-навсего убрать проекционный экран.
*Тот факт, что действиями в настоящем мы, оказывается, способны изменять прошлое, круши? не только мировоззрение, но и глагольные времена.
Хуже того — своими действиями мы сделаем так, что фотон каким-то образом выберет, через какую щель проскакивать. Есть что-то замогильно-жуткое в том, чтобы иметь возможность так глубоко повлиять на реальность, особенно если осознать, что, как представляется, фотон тогда делает выбор ретроспективно.
Квантовая механика (и Уилер) утверждает, что в принципе не существует никакого способа предсказать, через какую щель пройдет фотон, до того, как мы заставим его вести себя согласно классической физике (убрав экран). Да, мы действительно способны изменить квантовый мир уже после того, как произошло некое событие. Из чего можно вывести два потрясающих следствия:
1) наблюдение над системой фундаментально ее меняет;
2) отдельные фотоны способны вести себя и как частица, и как волна и в мгновение ока переключаться из одного состояния в другое.
III. Что же такое, в самом деле, электроны, если их как следует рассмотреть?
Все странности квантовой механики были бы невинными шалостями, если бы относились только к свету. Свет — особая статья: у него вообще нет массы, и к тому же он постоянно движется со скоростью с. Как вы, наверное, догадались, беда в том, что фокусы квантовой механики распространяются не только на фотоны.
Самые легкие частицы, с которыми мы можем без труда иметь дело, — это электроны. Если вы не слишком много о них знаете, это ничего, мы как следует перемоем им косточки в главе 4. Сейчас вам надо знать только одно — что с электронами мы имеем дело постоянно. Традиционные (не плазменные) телевизоры делаются на основе «электронно-лучевых трубок », а это всего-навсего интеллигентное название для баллистических электронных пушек, которые пуляются вам в лицо электронами на околосветовой скорости.
Что будет, если мы в ходе опыта с двумя щелями будем стрелять электронами, а экран поставим флуоресцентный? Каждый раз, когда электрон попадает во флуоресцентный экран, мы видим вспышку света, так что можем сосчитать, сколько электронов попадает в каждую конкретную часть экрана. Если бы Хайд мог наложить свои корявые злодейские руки на электронный луч и если бы он настроил источник так, чтобы посылать только один электрон за раз, он все равно получил бы на экране рисунок, характерный для волн, а не для частиц. То же поведение, которое мы наблюдали у фотонов!
Провести этот опыт в реальности было невозможно по техническим причинам до самого недавнего времени, хотя физическое сообщество ничуть не сомневалось, к каким результатам он приведет. В 1989 году Акира Тономура из Университета Гакусюин и его сотрудники провели опыт с двумя щелями для электронов, и вас ничуть не удивит, когда вы узнаете, что электронный луч дает абсолютно тот же результат, характерный для. волн,— множество линий на экране — что и световой луч. По крайней мере мы надеемся, что вас это ничуть не удивит.
По данным Тономуры и др., 1989
На тот случай, если вам нужно получить подзатыльник от Хайда, чтобы лучше дошло, повторим: тот факт, что электрон способен интерферировать сам с собой, доказывает, что на самом деле он проходит одновременно в обе щели. Однако рассечь электрон напополам нельзя даже самой острой катаной. Ну, как вам парадокс? Электрон проходит в обе щели, даже не разделяясь надвое.
Конечно, это справедливо не только для фотонов и электронов. В последнее время этот опыт провели с самыми разными микроскопическими объектами, например с нейтронами и атомами. И все они вели себя совершенно так же — по-квантовому странно.
Мы признаем, что навязчиво рекламируем вам опыт с двумя щелями, но, уверяем вас, без этого никак. Темы вроде относительности позволяют ученому-физику принять факты наподобие скорости света, а затем построить теорию для объяснения, в общем-то, всего остального, не покидая уютной кладовки в доме своих родителей. Квантовая механика, напротив, практически целиком построена на опытах, опытах и еще раз опытах, причем зачастую оказывается, что прежние теории не в силах объяснить происходящее.
Обратная сторона опыта Тономуры — та же, что и в опыте Уилера с отложенным выбором. Если мы каким-то образов будем следить за электронами, чтобы посмотреть, в какую именно щель они пролетают, то произойдет коллапс волновой функции, и мы заставим электроны вести себя, как подобает частицам.
«Коллапс волновой функции» — фраза, которой физики бросаются направо и налево, для них это все равно что сказать «вычислить собственные значения гамильтониана» или «посидеть дома одному в субботу вечером». Мы так к ней привыкли, что забываем, что требуются дополнительные объяснения18.
*А фраза «посидеть дома одному в субботу вечером» дополнительных объяснений не требует. Сидите, невежды, дома и дочитывайте эту книгу, причем с радостью, кому сказано?!
А вот о волновой функции имеет смысл кое-что добавить.
В квантовой модели волной является все. Если внимательно посмотреть на электроны, окажется, что они вовсе не похожи на шарики — скорее на облачка. Там, где облако (или, если вы цените постоянство терминологии, «волновая функция») плотнее всего, мы имеем самую высокую вероятность обнаружить электрон в данный момент времени.
Когда мы говорим, что электрон «ведет себя как волна», или когда вы слышите разговоры об электронном облаке, это не значит, что электрон как таковой — это такой бесформенный предмет вроде сахарной ваты. Также мы не хотим, чтобы вы считали волновую функцию электрона чем-то вроде тасманийского дьявола из старых мультиков — помните, он бегал так быстро, что казался размазанным пятном?
Электрон и в самом деле находится сразу в нескольких местах, и если мы вычислим его точное местоположение, то изменим природу системы. Нет никакого способа заранее узнать, где именно находится электрон, и изолировать его возможно только посредством наблюдения. Как только мы выявляем местоположение электрона, например, попадаем в него фотоном, происходит коллапс волновой функции, и в следующий миг мы почти наверняка знаем, где находится электрон. Волновая функция уже не распространяется на большую область пространства.
Представьте себе, что Джекил и Хайд сидят и играют в «Морской бой»19.