KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Андрей Гришаев - Этот «цифровой» физический мир

Андрей Гришаев - Этот «цифровой» физический мир

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Андрей Гришаев, "Этот «цифровой» физический мир" бесплатно, без регистрации.
Перейти на страницу:

У того же Левантовского [Л1] доходчиво изложено, как делать этот правильный расчёт скачка «истинной» скорости аппарата. Пусть аппарат выведен на т.н. гомановскую траекторию полёта к планете-цели – наиболее энергетически выгодную. Такая траектория представляет собой, упрощённо, половину околосолнечного эллипса, перигелий и афелий которого касаются орбит Земли и планеты-цели. Если планета-цель более удалёна от Солнца, чем Земля, то, при подлёте к планете, гелиоцентрическая скорость аппарата меньше орбитальной скорости планеты. В этом случае переход границы области планетарного тяготения возможен лишь через её переднюю полусферу: планета догоняет аппарат. Чтобы найти вектор начальной скорости аппарата в планетоцентрической системе сразу после его входа в область тяготения планеты, следует из вектора скорости аппарата в гелиоцентрической системе вычесть вектор скорости орбитального движения планеты. Например, если Марс, орбитальная скорость которого равна 24 км/с, догоняет аппарат, движущийся в том же направлении со скоростью 20 км/с, то начальная скорость аппарата внутри области тяготения Марса будет равна 4 км/с и направлена противоположно вектору орбитальной скорости Марса. Таким образом, скачок модуля локально-абсолютной скорости (1.6) аппарата составит 16 км/с. Всё происходит аналогично и при влёте в область тяготения более близкой к Солнцу планеты, чем Земля – с той лишь разницей, что в этом случае переход границы происходит через её заднюю полусферу, поскольку здесь гелиоцентрическая скорость аппарата больше, чем орбитальная скорость планеты.

Теперь заметим, что скачок локально-абсолютной скорости аппарата (на десятки километров в секунду!) должен, согласно (1.8.2), вызвать скачок допплеровского сдвига несущей при радиосвязи с аппаратом – а ведь при узкополосности трактов у систем дальней космической связи, такой скачок выведет несущую далеко за пределы текущей рабочей полосы, и связь прервётся. Факты свидетельствуют о том, что именно по такому сценарию терялась связь с советскими и американскими автоматическими межпланетными станциями на всех первых подлётах к Венере и Марсу.

Из открытых источников (см., например, [ВЕБ1-ВЕБ3]) известно, что история первых запусков космических аппаратов к Венере и Марсу – это почти сплошная череда неудач: взрывов, «не выходов» на расчётную траекторию, аварий, отказов различных бортовых систем… Поступали так: в очередное «окно» во времени, благоприятное для запуска, космические аппараты запускали пачками – в надежде, что хотя бы один из них выполнит запланированную программу. Но и это мало помогало. Открытые источники умалчивают о том, что, на подступах к планете-цели, аппарат подстерегала непонятная беда: радиосвязь с ним терялась, и он «пропадал без вести».

Вот несколько примеров. В 1965 г., 12 ноября к «утренней звезде» была запущена межпланетная автоматическая станция «Венера-2», а 16 ноября, вдогонку – «Венера-3». Перед сближением с планетой связь с «Венерой-2» была потеряна. По расчётам, станция прошла 27 февраля 1966 г. на расстоянии 24 тыс. км от Венеры. Что касается «Венеры-3», то 1 марта 1966 г. её спускаемый аппарат впервые достиг поверхности планеты. Однако, в сообщении ТАСС умолчали о том, что и с этой станцией связь была потеряна на подлёте к планете [ВЕБ2]. А вот каким было начало «марсианской гонки». Межпланетная автоматическая станция «Марс-1»: запуск 01 ноября 1962 г., связь потеряна 21 марта 1963 г. Межпланетная автоматическая станция «Зонд-2»: запуск 30 ноября 1964 г., связь потеряна 5 мая 1965 г. Аналогичные вещи происходили и с американскими космическими аппаратами, причём один случай заслуживает особого внимания: «В июле 1969 г., когда «Маринер-7» достиг злополучного района космоса, где предыдущие аппараты пропали без вести, связь с ним была потеряна на несколько часов. После восстановления связи, к недоумению руководителей полёта, …его скорость в полтора раза превышала расчётную» [ВЕБ3]. Ясно, что восстановление связи произошло не само собой, а в результате удачной компенсации изменившегося допплеровского сдвига – поскольку именно по допплеровскому сдвигу судили о скорости аппарата. Лишь после того как научились, таким образом, восстанавливать пропадающую радиосвязь, один за другим посыпались успехи в межпланетной космонавтике.

Поскольку феномен скачков допплеровского сдвига, при пересечении аппаратом границы планетарного тяготения, совершенно не вписался в официальную теоретическую доктрину, представители официальной науки пытались замолчать этот феномен. Но – тщетно! Слишком широко известно, что на первых подлётах к Венере и Марсу пропадала связь с аппаратами. Мне лично доводилось беседовать со специалистами, которые, будучи верны научному долгу, до последнего отбрёхивались насчёт того, что связь, мол, пропадала вовсе не из-за каких-то там «скачков», а из-за того, что у аппаратов «сдыхало оборудование». Тогда спрашивается: почему различное оборудование у всех первых аппаратов «сдыхало» на одном и том же удалении от планеты? И почему впоследствии, как по мановению волшебной палочки, оно перестало «сдыхать» вовсе? Ответов на эти простые вопросы специалисты до сих пор не выработали.

А посему примем к сведению эти убийственные для релятивизма опытные факты – скачок «истинной» скорости космического аппарата при переходе через границу области планетарного тяготения, а также результирующее пропадание радиосвязи с аппаратом, которую можно восстановить с помощью вполне определённого сдвига несущей.

Кстати, у нас поначалу вызывал недоумение вопрос о том, почему же связь с аппаратами не терялась ещё на их вылете за границу земного тяготения. А разгадка, по-видимому, проста. Чтобы отправить аппарат по гомановской траектории (см. выше), нужно вывести его из области земного тяготения таким образом, чтобы его гелиоцентрическая скорость оказалась на требуемую величину больше, чем 30 км/с – для полёта к внешней планете, или, соответственно, меньше – для полёта к внутренней планете. Причём, пересечение границы земного тяготения желательно производить – опять же, из энергетических соображений – под острым углом, почти по касательной к этой границе. Совмещая эти требования, пересечение границы производили на одном из двух её участков – либо на ближайшем к Солнцу, либо на наиболее удалённом. При этом, несмотря на значительный (около 30 км/с) скачок локально-абсолютной скорости аппарата при пересечении границы, было совсем незначительно изменение проекции этой скорости на прямую «Земля-станция» - а, значит, согласно (1.8.2), было незначительно и соответствующее изменение допплеровского сдвига. Конечно, при влёте аппарата в область тяготения планеты-цели, ситуация была совершенно иная.

В продолжение этой сюжетной линии можно упомянуть ещё про т.н. гравитационные манёвры, с помощью которых изменяют параметры гелиоцентрической траектории космического аппарата – при пролёте его сквозь область действия тяготения той или иной планеты. Подобные гравитационные манёвры преподносят публике как высший космический пилотаж. Мы этого не отрицаем; мы только добавляем, что такой пилотаж стал возможен после того, как специалисты научились правильно отрабатывать вышеописанные пограничные эффекты.

1.11. Ещё один пограничный эффект: годичная аберрация света от звёзд.

Аберрационные смещения видимых положений звёзд были открыты Брэдли в 18 веке. Обнаружилось, что, с периодом в один год, звёзды выписывают на небесной сфере эллипсы, вытянутые тем больше, чем меньше угол между направлением на звезду и плоскостью земной орбиты. Было ясно, что это явление как-то связано с орбитальным движением Земли, причём, по двум главным причинам, это явление не сводилось к годичному параллаксу. Во-первых, параллактический сдвиг далёких объектов происходит в сторону, противоположную смещению наблюдателя – тогда как годичные аберрационные сдвиги сонаправлены с вектором орбитальной скорости Земли. Во-вторых, параллактические сдвиги тем меньше, чем больше расстояние до объекта – тогда как большая полуось эллипсов годичной аберрации одинакова для всех звёзд: в угловой мере, она примерно равна отношению орбитальной скорости Земли к скорости света.

Годичная аберрация легко объяснялась на основе ньютоновых представлений о световых корпускулах. Объяснение же её с позиций представлений о свете, как о волнах в эфире, было довольно-таки проблематичным. В самом деле, наземные оптические опыты, например, опыт Майкельсона-Морли, показывали, что околоземный эфир вместе с Землёй участвует в её орбитальном движении. Как же тогда околоземный эфир без всяких турбулентностей продирается сквозь межпланетный эфир? Стокс показал, что эта проблема, по линии гидродинамики, устранялась бы, если плотность эфира у поверхности Земли была бы на несколько порядков больше, чем в межпланетном пространстве. Но известно, что скорость света у поверхности Земли и в межпланетном пространстве – практически одинакова, а ведь свет считался волнами упругих деформаций в эфире! Немыслимо, чтобы, при изменении плотности среды на несколько порядков, не изменялась бы скорость упругих волн в этой среде! Наконец, Эйнштейн упразднил эфир и, следуя логике относительных скоростей, заявил, что угол аберрации зависит от относительной тангенциальной скорости излучателя и наблюдателя [Э2].

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*