KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Брайан Грин - Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - Скрытая реальность. Параллельные миры и глубинные законы космоса

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Брайан Грин, "Скрытая реальность. Параллельные миры и глубинные законы космоса" бесплатно, без регистрации.
Перейти на страницу:

53

Хотя утверждение о том, что изменения физических свойств нашей Вселенной не будут благоприятствовать жизни в привычном виде, широко признано научной общественностью, некоторые учёные полагают, что диапазон значений, совместимых с жизнью, может быть шире, чем принято думать. Эти вопросы широко обсуждались в литературе. См., например: John Barrow and Frank Tipler, «The Anthropic Cosmological Principle». New York: Oxford University Press, 1986; John Barrow, «The Constants of Nature». New York: Pantheon Books, 2003; Paul Davies, «The Cosmic Jackpot». New York: Houghton Mifflin Harcourt, 2007; Victor Stenger, «Has Science Found God?» Amherst, N. Y.: Prometheus Books, 2003; а также приведённые там ссылки.

54

Опираясь на материал, изложенный в предыдущих главах, можно, казалось бы, легко заключить, что ответ, безусловно, да. Рассмотрим, говорите вы, стёганную мультивселенную, в бесконечном пространственном объёме которой находится бесконечно много вселенных. Однако вам следует быть осторожнее. Даже при бесконечном количестве вселенных список различных значений для космологических постоянных может оказаться коротким. Если, например, основные законы не допускают много различных значений для космологической постоянной, то тогда независимо от числа вселенных, будет реализовываться лишь малый набор возможных космологических постоянных. Поэтому задаваемый нами вопрос такой: (а) есть ли кандидаты на роль физических законов, которые приводят к мультивселенной, (б) содержит ли порождённая таким образом мультивселенная значительно больше, чем 10124 различных вселенных, (в) гарантируют ли эти законы, что значение космологической постоянной варьируется от вселенной к вселенной.

55

Эти четыре автора были первыми, кто показал, что при разумном выборе пространств Калаби — Яу и пронизывающих их отверстия потоков, можно прийти к струнным моделям с небольшими положительными значениями космологической постоянной, сопоставимыми с наблюдаемыми данными. Впоследствии, совместно с Хуаном Малдасеной и Лайамом Макалистером, эта группа опубликовала крайне важную статью о том, как совместить инфляционную космологию с теорией струн.

56

Если быть более точным, этот горный рельеф будет существовать внутри приблизительно 500-мерного пространства, независимые направления которого — координатные оси — будут соответствовать различным полевым потокам.

Рисунок 6.4 даёт приблизительную картину, но позволяет получить представление о взаимосвязях между различными формами дополнительных измерений. Помимо этого, говоря о струнном ландшафте, физики обычно подразумевают, что кроме возможных значений потоков этот горный рельеф отражает также все возможные размеры и формы (различные топологии и геометрии) дополнительных измерений. Долины струнного ландшафта — это те места (определённые формы дополнительных измерений и их потоков), где естественным образом располагаются пузырьки-вселенные, как расположился бы мяч, скатившийся в долину с реального горного ландшафта. С математической точки зрения долины — это (локальные) минимумы потенциальной энергии, ассоциированной с дополнительными измерениями. В классической теории, если пузырёк-вселенная обретёт форму дополнительных измерений, соответствующую долине, то это свойство останется навсегда неизменным. Однако в квантовой теории туннелирование может привести к изменению формы дополнительных измерений.

57

Квантовое туннелирование на более высокий пик возможно, но согласно квантовым вычислениям, значительно менее вероятно.

58

Продолжительность расширения пузырька-вселенной до столкновения определяет силу столкновения и последующие разрушения. Если вернуться к примеру с Трикси и Нортоном из главы 3, такие столкновения поднимают интересный вопрос о времени. При столкновении двух пузырьков-вселенных их внешние края — на которых энергия поля инфлатона имеет большие значения — соприкасаются. С точки зрения наблюдателя, находящегося внутри любого из сталкивающихся пузырьков, большое значение энергии поля инфлатона соответствует ранним моментам времени, близким к моменту Большого взрыва в этом пузырьке. Таким образом, столкновения пузырьков-вселенных происходят на заре их рождения, и потому образовавшиеся волны могут оказывать влияние на ещё один процесс, происходящий в ранней Вселенной, — на образование реликтового излучения.

59

В главе 8 мы рассмотрим квантовую механику более подробно. Как мы увидим, моё утверждение «находятся за кулисами повседневной реальности» может быть интерпретировано разными способами. Здесь я имею в виду самый простой: уравнение квантовой механики подразумевает, что волны вероятности, как правило, отсутствуют в обычных пространственных измерениях. Наоборот, эти волны распространяются в другой среде, которая учитывает не только привычные пространственные измерения, но также число описываемых частиц. Эта среда называется конфигурационным пространством; его объяснение заинтересованный читатель может найти в комментарии {71}.

60

Если наблюдаемое нами ускоренное расширение пространства не постоянно, тогда в некоторый момент в будущем расширение замедлится. Замедление позволит свету от объектов, находящихся в данный момент за пределами нашего космического горизонта, достичь нас; наш космический горизонт увеличится. В этом случае будет совсем странным считать, что миры за пределами нашего горизонта не являются реальными, поскольку в будущем к ним может появится доступ. (Вы можете вспомнить, что в конце главы 2 было отмечено, что показанные на рис. 2.1 космические горизонты будут увеличиваться с течением времени. Это верно для вселенной, в которой темп пространственного расширения не убыстряется. Однако, если расширение ускоряется, то существует расстояние, за которое мы никогда не сможем заглянуть, сколь долго мы не ждали бы. В ускоряющейся вселенной космический горизонт не может превзойти размер, который определяется математически темпом ускорения.)

61

Приведём конкретный пример свойства, которое может быть общим для всех вселенных из некоторой мультивселенной. В главе 2 отмечалось, что современные наблюдательные данные строго указывают на то, что кривизна пространства равна нулю. Однако довольно сложные математические вычисления показывают, что все пузырьки-вселенные в инфляционной мультивселенной обладают отрицательной кривизной. Грубо говоря, пространственные формы с равными значениями инфлатона — формы, определяемые соединением равных чисел на рис. 3.8б, — больше похожи на картофельные чипсы, чем на плоскую поверхность стола. Но даже в этом случае инфляционная мультивселенная остаётся совместимой с наблюдениями, потому что при расширении любой формы её кривизна уменьшается (кривизна жемчужины всем очевидна, а кривизна поверхности Земли не замечалась тысячелетиями). Если наш пузырёк-вселенная продолжает испытывать значительное расширение, его кривизна может быть отрицательной и при этом настолько малой, что современные измерения не смогут уловить отличие от нуля. Отсюда следует возможный тест. Если более точные наблюдения в будущем покажут, что кривизна пространства очень мала, но положительна, это опровергнет гипотезу о том, что наша Вселенная является частью инфляционной мультивселенной, как было отмечено Б. Фрайфогелем, М. Клебаном, М. Родригез Мартинезом и Л. Сасскиндом в статье: B. Freivogel, M. Kleban, M. Rodriguez Martinez, and L. Susskind «Observational Consequences of a Landscape», «Journal of High Energy Physics» 0603, 039 [2006]; если измерения дадут положительное значение для кривизны, равное примерно 10−5, это станет сильным аргументом против квантово-туннельных переходов, которые согласно теории заполняют струнный ландшафт (см. главу 6).

62

Список космологов и струнных теоретиков, внёсших значительный вклад в эту область, включает, помимо многих других, таких исследователей как Алан Гут, Андрей Линде, Александр Виленкин, Жауме Гаррига, Дон Пейдж, Сергей Виницки, Ричард Истер, Юджин Лим, Мэттью Мартин, Майкл Дуглас, Фредерик Денеф, Рафаэль Буссо, Бен Фрайфогель, И-Шен Янг, Делия Шварц-Перлов.

63

Стоит ещё отметить, что описанные вычисления выполнялись без конкретизации типа мультивселенной. Наоборот, Вайнберг и его соавторы рассмотрели модель мультивселенной с изменяющимися характеристиками и вычислили густоту галактик в каждой из составляющих её вселенных. Чем больше галактик во вселенной, тем больший вес приписывается её свойствам при вычислении усреднённых свойств, с которыми столкнётся типичный наблюдатель. Однако, поскольку Вайнберг и его соавторы не конкретизируют модель мультивселенной, их вычисления не могут учесть вероятность нахождения в данной мультивселенной вселенных с теми или иными свойствами (те вероятности, которые обсуждались в предыдущем разделе). Возможно наличие вселенных с космологическими постоянными и флуктуациями, лежащими в определённом диапазоне, так что они готовы для запуска процесса образования галактик, но если такие вселенные редки в данной мультивселенной, то мы вряд ли обнаружим, что находимся в одной из них.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*