KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Ричард Фейнман - 5b. Электричество и магнетизм

Ричард Фейнман - 5b. Электричество и магнетизм

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Фейнман, "5b. Электричество и магнетизм" бесплатно, без регистрации.
Перейти на страницу:

Как надо решать такую задачу? У нас есть дифференциаль­ные уравнения, но поскольку они такие же, как в электроста­тике, то математическое решение их нам уже известно. Анало­гичная задача электростатики относится к проводнику радиу­сом а при потенциале j1, отделенном от другого проводника радиусом b при потенциале j2, с концентрическим слоем ди­электрика между ними (фиг. 12.1, б). Далее, поскольку поток тепла h соответствует электрическому полю Е, то наша искомая величина G соответствует потоку электрического поля от единичной длины (другими словами, электрическому заряду на единице длины, деленному на e0). Мы решали электростати­ческую задачу с помощью закона Гаусса. Нашу задачу о потоке тепла будем решать таким же способом.

Из симметрии задачи мы видим, что h зависит только от расстояния до центра. Поэтому мы окружим трубку гауссовой поверхностью — цилиндром длиной L и радиусом r. С помощью закона Гаусса мы выводим, что поток тепла h, умноженный на площадь поверхности 2prL, должен быть равен полному количеству тепла, рождаемому внутри, т. е. тому, что мы назвали G:

(12.9)

Поток тепла пропорционален градиенту температуры

или в данном случае величина h равна

 

Вместе с (12.9) это дает

(12.10)

Интегрируя от r=а до r=b, получаем

(12.11)

Разрешая отнсительно G, находим

(12.12)

Этот результат в точности соответствует формуле для заряда цилиндрического конденсатора:

Задачи одинаковые и имеют одинаковые решения. Зная электро­статику, мы тем самым знаем, сколько тепла теряет изолирован­ная труба.

Рассмотрим еще один пример. Пусть мы хотим узнать поток тепла в окрестности точечного источника, расположенного неглубоко под поверхностью земли или же вблизи поверхности большого металлического предмета. В качестве локализованно­го источника тепла может быть и атомная бомба, которая взор­валась под землей и представляет собой мощный источник тепла, или же небольшой источник радиоактивности внутри железного блока — возможностей очень много.

Рассмотрим идеализированную задачу о точечном источнике тепла, мощность которого G, на расстоянии а под поверхностью бесконечной однородной среды с коэффициентом теплопровод­ности К. Теплопроводностью воздуха над поверхностью среды мы пренебрежем. Мы хотим определить распределение темпе­ратуры на поверхности среды. Насколько горячо будет прямо над источником и в разных местах на поверхности?

Как же решить эту задачу? Она похожа на задачу по электро­статике, в которой имеются два материала с разной диэлектри­ческой проницаемостью x по обе стороны от разделяющей их границы. Здесь что-то есть! Возможно, это похоже на точечный заряд вблизи границы между диэлектриком и проводником или что-нибудь вроде этого. Посмотрим, что происходит вблизи границы. Физическое условие состоит в том, что нормальная составляющая h на поверхности равна нулю, поскольку мы предположили, что потока из блока нет. Мы должны задать вопрос: в какой электростатической задаче возникает условие, что нормальная компонента электрического поля Е (представ­ляющая собой аналог h) равна нулю у поверхности? Нет такой!

Это один из тех случаев, к которым следует относиться с осторожностью. По физическим причинам могут быть опре­деленные ограничения тех математических условий, которые возникают в каком-либо случае. Поэтому если мы проанализи­ровали дифференциальное уравнение только для некоторых ограниченных примеров, то вполне можем упустить ряд реше­ний, возникающих в других физических условиях. Например, нет материала, обладающего диэлектрической проницаемостью, равной нулю, а теплопроводность вакуума равна нулю. Поэтому нет электростатического аналога идеального теплоизолятора. Мы можем, однако, попытаться использовать те же методы. Попробуем вообразить, что произошло бы, если бы диэлектри­ческая проницаемость была равна нулю. (Разумеется, в реаль­ных условиях диэлектрическая проницаемость никогда не обра­щается в нуль. Но может представиться случай, когда вещество имеет очень большую диэлектрическую проницаемость, так что диэлектрической проницаемостью воздуха вне среды можно пренебречь.)

Как же найти электрическое поле, у которого нет составляю­щей, перпендикулярной к поверхности? Иначе говоря, такое поле, которое всюду касательно к поверхности? Вы заметите, что эта задача обратна задаче о точечном заряде вблизи прово­дящей плоскости. Там нам нужно было поле, перпендикулярное

к поверхности, потому что проводник всюду находился при одном и том же значении потенциала.

В задаче об электрическом поле мы придумали решение, вообразив за проводящей плоскостью точечный заряд. Можно воспользоваться снова этой же идеей. Попытаемся выбрать такое «изображение» источника, которое автоматически обраща­ло бы в нуль нормальную компоненту поля вблизи поверхности. Решение показано на фиг. 12.2. Электрическое изображение источника с тем же знаком и той же величины, находящееся на расстоянии а над поверхностью, дает поле, горизонтальное повсюду у поверхности. Нормальные компоненты от обоих ис­точников взаимно уничтожаются.

Итак, наша задача о потоке тепла решена. Температура во всем пространстве одинакова по непосредственной аналогии с потенциалом от двух одинаковых точечных зарядов. Темпера­тура Т на расстоянии r от одного точечного источника G в бес­конечной среде равна

(12.13)

(Это, конечно, полностью аналогично j= q/4pe0r.) Температура точечного источника и, кроме того, его изображения равна

(12.14)

Эта формула дает нам температуру всюду внутри блока. Несколько изотермических поверхностей приведено на фиг. 12.2.

Показаны также линии h, ко­торые можно получить из вы­ражения h =-КСТ.

В самом начале мы инте­ресовались распределением температуры на поверхности. Для точки на поверхности находящейся на расстоянии р от оси, r1=r2=Ц (р2 + а2),

Фиг. 12.2. Поток тепла и изотерма у точечного источника тепла, расположенного на расстоя­нии а под поверхностью тела с хорошей теплопроводностью. Вне тела показано мнимое изображение источника.

сле­довательно,

(12.15)

Эта функция также изображена на фиг. 12.2. Естественно, что температура прямо над источником выше, чем вдали от него. Такого рода задачи часто приходится решать геофизикам. Теперь мы видим, что это те же самые задачи, которые мы ре­шали в электричестве.

§ 3. Натянутая мембрана

Рассмотрим теперь совсем другую область физики, в которой тем не менее мы придем снова к точно таким же уравнениям. Возьмем тонкую резиновую пленку — мембрану, натянутую на большую горизонтальную раму (наподобие кожи на бараба­не). Нажмем на мембрану в одном месте вверх, а в другом — вниз (фиг. 12.3). Сможем ли мы описать форму поверхности? Покажем, как можно решить эту задачу, когда отклонения мембраны не очень велики.

В пленке действуют силы, потому что она натянута. Если сделать в каком-нибудь месте пленки небольшой разрез, то два края разреза разойдутся (фиг. 12.4). Следовательно, в пленке имеется поверхностное натяжение, аналогичное одномерному натяжению растянутой веревки. Определим величину поверх­ностного натяжения t как силу на единицу длины, которая как раз удержала бы вместе две стороны разреза (см. фиг. 12.4).

Предположим теперь, что мы смотрим на вертикальное по­перечное сечение мембраны. Оно будет иметь вид некоторой кривой, похожей на изображенную на фиг. 12.5. Пусть и — вертикальное смещение мембраны от ее нормального положения, а х и у — координаты в горизонтальной плоскости

Фиг. 12.3. Тонкая резино­вая пленка, натянутая на цилиндр (нечто вроде ба­рабана).

Какой формы будет поверх­ность, если пленку приподнять в точке A и опустить в точке В?

Фиг. 12.4. Поверхностное натяжение t натянутой, резиновой пленки есть сила отнесенная к единице дли­ны и направленная перпен­дикулярно линии разреза.

(Приведенное сечение параллельно оси х.)

Возьмем небольшой кусочек поверхности длиной Dx; и ши­риной Dу. На него действуют силы вследствие поверхностного натяжения вдоль каждого края. Сила на стороне 1 (см. фиг. 12.5) будет равна t1Dy и направлена по касательной к поверхности, т. е. под углом q1 к горизонтали. Вдоль стороны 2 сила будет равна t2Dy и направлена к поверхности под углом q2. (Подобные силы будут и на двух других сторонах кусочка, но мы пока забудем о них.) Результирующая сила от сторон 1 и 2, дей­ствующая на кусочек вверх, равна

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*