KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Ричард Фейнман - 2. Пространство. Время. Движение

Ричард Фейнман - 2. Пространство. Время. Движение

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Фейнман, "2. Пространство. Время. Движение" бесплатно, без регистрации.
Перейти на страницу:

Координаты и время (х, y, z, t), измеренные «покоящимся» наблюдателем, преобразуются в координаты и время (х', y', z', t'), измерен­ные внутри «движущегося» со скоростью u космического корабля:

Давайте сравним эти уравнения с уравнением (11.5), которое тоже связывает измерения в двух системах, только одна из них теперь вращается относительно другой

х'=хcosq+ysinq,

у' = ycosq-xsinq, (17.2)

z'=z.

В этом частном случае у Мика и Джо оси х' и x повернуты на угол 0. Но и в том и в другом случае мы замечаем, что «штрихованные» вели­чины — это «перемешанные» между собой «нештрихованные»: новое х' есть смесь х и у, а новое у' — другая смесь x и y.

Проведем следующую аналогию: когда мы глядим на пред­мет, мы различаем его «видимую ширину» и «видимую толщину». Но эти два понятия — «ширина» и «толщина» — отнюдь не основные свойства предмета. Отойдите в сторону, взгляните на предмет под другим углом — видимая ширина и видимая толщина предмета станут другими. Можно написать формулы, позволяющие узнать новые ширину и толщину по известным старым и по углу поворота. Уравнения (17.2) — как раз эти формулы. Можно сказать, что данная толщина есть своего рода «смесь» всех ширин и всех толщин. Если б мы не могли сдвинуться с места, если б мы на данный предмет всегда гля­дели из одного и того же положения, то нам все эти рассуж­дения показались бы неуместными; мы ведь и так всегда видели бы пред собой «настоящую» ширину и «настоящую» толщину и знали бы, что это совершенно разные качества предмета: один связан с углом, под каким виден предмет, другой требует фокусирования глаза и даже интуиции. Они казались бы аб­солютно различными, их незачем было бы смешивать. Только потому, что мы в состоянии обойти вокруг предмета, мы по­нимаем, что ширина и толщина — это разные стороны одного и того же предмета.

Нельзя ли взглянуть на преобразование Лоренца таким же способом? Ведь и здесь перед нами смесь — смесь местополо­жения и момента времени. Из значений координаты и времени получается новая координата. Иначе говоря, в измерениях пространства, сделанных одним человеком, есть с точки зрения другого малая примесь времени. Наша аналогия позволяет высказать следующую мысль: «реальность» предмета, на кото­рый мы смотрим, включает нечто большее (говоря грубо и образно), чем его «ширину» и его «толщину», потому что обе они зависят от того, как мы смотрим на предмет. Оказавшись на новом месте, наш мозг немедленно пересчитывает и ширину, и толщину. Но когда мы будем двигаться с большой скоро­стью, наш мозг не сможет немедленно пересчитать координаты и время: у нас нет опыта движений со скоростями, близкими к световой, мы не ощущаем время и пространство как явле­ния одной природы. Все равно как если бы нас усадили на какое-то место, заставили бы разглядывать ширину какого-то предмета и при этом не разрешали бы даже поворачивать голову. Мы теперь понимаем, что, будь у нас такая возмож­ность, мы могли бы увидеть немножко от времени другого человека, как бы «заглянуть» сзади него.

Итак, мы должны попытаться представить себе предметы в мире нового типа, в котором время с пространством смешано в том же смысле, в каком предметы нашего привычного пространственного мира можно разглядывать с разных направ­лений. Мы должны считать, что предметы, занимающие неко­торое место и существующие некоторый период времени, занимают некую «дольку» мира нового типа и что мы смотрим на эту «дольку» с разных точек зрения, когда движемся с разной скоростью. Этот новый мир, эта геометрическая реальность, в которой имеются «дольки», занимающие некоторое про­странство и существующие некоторое время, называется пространством-временем. Данная точка (х, у, z, t) в простран­стве-времени носит название события. Представьте, напри­мер, что ось х мы поместили горизонтально, оси у и z — в двух других направлениях, взаимно перпендикулярных и перпендикулярных к странице (!), а ось t направили верти­кально. Как на такой диаграмме изобразится, скажем, движу­щаяся частица? Когда частица неподвижна, у нее есть какая-то координата х; время течет, а х остается все тем же, и тем же, и тем же. Значит, ее «путь» — это прямая, параллельная оси (а на фиг. 17.1).

Фиг.17.1.Пути трех частиц в пространстве-времени. aчастица покоится в точке х=х0; bчастица отправилась из точки х= х0 с постоянной скоростью; счастица начала было двигаться, но затормозила; dраспространение света.

С другой стороны, если она равномерно удаля­ется, то с течением времени растет и х (b на фиг. 17.1). Таким образом, частица, которая сперва двигалась, а потом стала замедлять свой ход, изобразится чем-то похожим на кривую с на фиг. 17.1. Другими словами, всякая устойчивая, нераспа­дающаяся частица изображается линией в пространстве-времени. А распадающаяся частица изобразится вилкой, потому что она превращается в две частицы, выходящие из одной точки.

А как обстоит дело со светом? Скорость света всегда одна и та же, значит, свет можно изображать прямыми линиями одинакового наклона (d на фиг. 17.1).

Итак, согласно высказанной нами идее, если происходит некое событие, например частица внезапно распадается в ка­кой-то пространственно-временной точке (х, t) на две, то, если это для чего-нибудь нужно, поворотом осей можно полу­чить значения х и t в новой системе (фиг. 17.2, а). Но это не так: ведь уравнение (17.1) не совпадает с преобразованием (17.2), в них по-разному расставлены знаки, в одном встре­чаются sin9 и cos0, а в другом — некоторые алгебраические

Фиг. 17.2. Два изображения распада частицы. а — неверное; 6верное.

величины. (Вообще-то иногда алгебраические величины вы­ражаются через косинус и синус, но в данном случае это невозможно.) А все-таки эти выражения очень похожи. Как мы с вами увидим, нельзя представлять себе пространство-время в виде реальной обычной геометрии, и все из-за этой разницы в знаках. На самом деле, хотя мы этого пока не под­черкивали, оказывается, что движущийся наблюдатель должен пользоваться осями, равнонаклоненными к линии светового луча, и проектировать точку на эти оси при помощи отрезков, им параллельных. Это показано на фиг. 17.2, б. Мы не будем заниматься этой геометрией, она не особенно помогает; легче работать прямо с уравнениями.

§ 2. Пространственно-временные интервалы

Хотя геометрия пространства-времени не обычная (не евклидова), тем не менее эта геометрия очень похожа на евклидову, но в некоторых отношениях весьма своеоб­разная. Если это представление о геометрии правильно, то должны существовать такие функции координат и времени, которые не зависят от системы координат. К примеру, при обычных вращениях, если взять две точки, одну для простоты в начале координат обеих систем, а другую в любом другом месте, то в обеих системах координат расстояние между точ­ками будет одинаково. Это первое свойство точек, которое не зависит от частного способа измерения: квадрат расстояния, или x2+y2+z2, не меняется при поворотах. А как с простран­ством-временем? Не трудно показать, что и здесь есть нечто, не зависящее от способа измерения, а именно комбинация c2t222-z2одинакова до и после преобразования

с2t'2-х'2-у'2-z'2=c2t2-х2-y2-z2. (17.3)

Поэтому эта величина, подобно расстоянию, «реальна» в том смысле, который был придан этому слову выше; ее называют интервалом между двумя пространственно-временными точ­ками, одна из которых в этом случае совпадает с началом коор­динат. (Точнее говоря, это не интервал, а квадрат интервала, точно так же как и х22+z2 — квадрат расстояния.) Это название подчеркивает различие в геометриях; обратите вни­мание, что в формуле присутствует с, а некоторые знаки об­ращены.

Давайте избавимся от с, оно нам не нужно, если мы хотим иметь удобное пространство, в котором х и t можно перестав­лять. Представьте, к какой путанице приведет измерение ширины по углу, под которым виден предмет, а толщины — по сокращению мышц при фиксировании глаза на предмет и выражение толщины в метрах, а ширины в радианах. При преобразованиях уравнений типа (17.2) тогда получится страшная неразбериха и ни за что не удастся разглядеть всю простоту и ясность предмета по той технической причине, что одно и то же будет измеряться двумя различными едини­цами. С помощью уравнений (17.1) и (17.3) природа говорит нам, что время равнозначно пространству; время становится пространством; их надо измерять в одинаковых единицах. Какое расстояние измеряет секунда? Из уравнения (17.3) это легко понять: секунда — это 3·108 м, расстояние, которое свет проходит за 1 сек. Иначе говоря, если бы расстояния и время мы измеряли в одинаковых единицах (секундах), то единицей длины было бы 3·108 м и уравнения упростились бы. А другой способ уравнять единицы — это измерять время в метрах. Чему равен метр времени? Метр времени — это время, за какое свет проходит расстояние в 1 .м, т. е. (l/3) ·10-8 сек, или 3,3 миллиардных доли секунды! Иными словами, нам нужно записать все уравнения в системе единиц, где с=1. Когда время и пространство станут измеряться в одинаковых единицах, уравнения, естественно, упростятся;

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*