KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Деловая литература » Опционы. Полный курс для профессионалов - Вайн Саймон

Опционы. Полный курс для профессионалов - Вайн Саймон

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Вайн Саймон, "Опционы. Полный курс для профессионалов" бесплатно, без регистрации.
Перейти на страницу:

Кроме вышеперечисленных параметров, в теории хеджирования рассматриваются производные цены опциона по процентной ставке – ро (rho). Для европейского опциона колл на акцию без дивидендов ее значение вычисляется по следующей формуле:

Rho = K × T × e−rT × N(d2),

d2 = [ln(S ÷ K) + (r − σ² ÷ 2) × T] ÷ [σ × √T].

Для опциона пут

Rho = −K × T × e−rT × N(−d2).

Если на акцию выплачиваются дивиденды по ставке q, то величина d2 вычисляется по следующей формуле:

d2 = [ln(S ÷ K) + (r − q − σ² ÷ 2) × T] ÷ [σ × √T].

Из формул следует, что цена европейского опциона колл растет с увеличением процентной ставки, а цена опциона пут, напротив, уменьшается с ростом процентной ставки.

Вопросы

1) Данные в табл. получены путем вычислений по формулам, указанным выше. На основе этих данных рассчитайте отношение тета/премия. Какой вывод можно сделать о зависимости значения тета/премия от величины дельта?

Опционы. Полный курс для профессионалов - img_137

2) Данные в табл. получены по формулам, указанным выше. На основе этих данных рассчитайте отношение вега/премия. Какой вывод можно сделать о зависимости величины вега/премия от дельты?

Опционы. Полный курс для профессионалов - img_138

3) Инвестор продает N = 1000 трехмесячных европейских опционов колл на акцию с непрерывным начислением дивидендов по ставке q = 5 %. Текущая цена акции S = $50, годовая волатильность = 60 %, непрерывно начисляемая безрисковая процентная ставка r = 7 %, цена исполнения опциона K = $60. Сколько акций необходимо приобрести инвестору, чтобы стоимость его портфеля не сильно колебалась при малых изменениях рыночной цены акции?

4) Позиция инвестора состоит из N = 1000 купленных трехмесячных европейских опционов колл на акцию, по которой не платятся дивиденды. Текущая цена акции σ = $40, годовая волатильность = 40 %, непрерывно начисляемая безрисковая процентная ставка r = 6 %, цена исполнения опциона K = $45. Определить, насколько за день уменьшится стоимость позиции при условии неизменности рыночных параметров.

5) Рассмотрим пример с инвестором из упражнения 3 и сформированным им дельта-нейтральным портфелем. Как повлияет на стоимость этого портфеля сильное изменение цены акции?

Ответы

1) На основе данных таблицы можно сделать вывод о том, что у опционов с низкой дельтой отношение тета/премия больше.

2) Из данных таблицы следует, что у опционов с низким значением дельты отношение вега/премия больше.

3) Задача эквивалентна построению дельта-нейтрального портфеля. Дельта опционной позиции инвестора равна

Опционы. Полный курс для профессионалов - img_139

Следовательно, чтобы дельта портфеля оказалась нулевой, инвестору необходимо приобрести на рынке 443 акции.

4) Тета позиции инвестора равна

Опционы. Полный курс для профессионалов - img_140

Таким образом, за день при условии неизменности рыночных параметров стоимость позиции уменьшится на Theta/365 = $18.

5) Поскольку инвестор продал опционы, а гамма позиции в акциях нулевая, то общая гамма портфеля будет отрицательной, и значит, сильные изменения цены акции в любую сторону увеличат стоимость портфеля.

III. Американские опционы. Опционы на фьючерсы, валюты, сырье, акции и облигации

1. Опционы американского стиля

В отличие от европейского опциона, который может быть исполнен лишь в конце своего срока действия, американский опцион может быть исполнен в любой момент на протяжении этого срока.

Один из способов оценки американских опционов заключается в использовании для этого биномиальных деревьев. Рассмотрим метод на примере вычисления цены американского колл-опциона на бездивидендную акцию.

Период действия опциона разобьем на малые отрезки времени длины dT. Предположим, что на каждом таком отрезке цена акции может от своего начального значения S либо с вероятностью p вырасти до Su, u > 1, либо с вероятностью 1 − p упасть до Sd, d < 1. Предположим также, что u = 1/d, т. е. последовательные движения цены акции сперва вверх, а затем вниз компенсируют друг друга.

Значения u и p определяются из вероятностных соображений. В модели Блэка – Шолца цена акции в момент времени t + dT S(t + dT) есть логнормальная случайная величина с параметрами (lnS + (r – σ²/2) × dT, σ × √dt), где S – цена акции в момент t. Исходя из этого можно вычислить математическое ожидание и дисперсию случайной величины S(t + dT), которые оказываются равными S × er × dT и S² × e2r × dT (eσ² × dT − 1) соответственно.

Опционы. Полный курс для профессионалов - img_141

В рассматриваемой нами модели S(t+dT) представляет собой дискретную случайную величину, с вероятностью p, равную Su, и с вероятностью 1 − p, равную Sd (ее математическое ожидание есть pSu + (1 − p)Sd, а дисперсия pS²u² + [(1 − p)S²d² – S²(pu + (1 − p)d)]. Чтобы такое приближение было наиболее точным, нужно, чтобы у этих двух случайных величин – дискретной и логнормальной совпадали математические ожидания и дисперсии. В таком случае для u, p и d с большой степенью точности выполняются равенства

p = (er× dT − d) /(u – d),

u = 1 /d = eσ × √dT.

Зная значения u и d, можно построить дерево, описывающее возможную динамику цены акции на период действия опциона.

В нулевой вершине стоит цена акции в начальный момент времени – S, i-й ярус дерева соответствует моменту времени i × dT и содержит i + 1 возможную цену акции в этот момент S × uj × di − j, j = 0… Для вычисления цены опциона осуществляется процедура «спуска» по дереву от последнего яруса к нулевому, т. е. от момента исполнения к начальному моменту времени.

В вершинах последнего яруса записаны цены акции в момент исполнения опциона, из которых легко получить стоимость опциона в момент исполнения по формуле max[(S(T) – K)]. Зная цену опциона на (s + 1) – м ярусе, можно найти его цену на s-м ярусе, т. е. в предыдущий момент времени. Продемонстрируем это на примере.

Пусть уже вычислена цена опциона в точках Suu и Sud – X и Y соответственно. В точке Su у покупателя опциона есть две возможности: либо немедленно исполнить опцион и получить прибыль A = max(Su − K,0), либо не исполнять его, и тогда через время dT с вероятностью p он будет стоить X и с вероятностью (1 − p) – Y, а значит, дисконтированная на текущий момент времени средняя ожидаемая стоимость есть B=e−r×dT × (p × X + (1 − p) × Y). Поскольку покупатель опциона стремится максимизировать свою прибыль, он, разумеется, выберет наиболее выгодный из этих вариантов, поэтому цена опциона в точке Su будет равна max(A,B).

Двигаясь от яруса к ярусу по этому алгоритму, мы в конечном итоге найдем интересующую нас цену опциона в начальный момент времени.

На практике для установления точной цены достаточно 19–21 итераций (ветвей дерева). Дальнейшие итерации незначительно уточняют цену, но замедляют расчеты.

2. Опционы на валюту

В случае опционов на валюту роль непрерывно начисляемых дивидендов играет ставка доходности в валюте – rf. Формула для цены опциона на валюту получается из формулы цены опциона колл на акцию с дивидендами (см. приложение I) простой заменой q на rf.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*