KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Деловая литература » Димитри Маекс - Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть

Димитри Маекс - Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Димитри Маекс, "Ключевые цифры. Как заработать больше, используя данные, которые у вас уже есть" бесплатно, без регистрации.
Перейти на страницу:

Во-первых, BT необходимо понять, как вести себя с малыми и средними компаниями. В те времена, когда у BT была полная монополия, у нее не имелось никаких причин сегментировать свою клиентскую базу. Когда дело касалось поставщиков телефонных услуг, у людей не оставалось выбора, поэтому BT не имело смысла выделять кого-то. Теперь, выйдя на рынок небольших и средних компаний, она нуждалась в прозрачной стратегии сегментации.

За своими крупнейшими клиентами BT всегда закрепляла персонального управляющего, отлично знавшего, что нужно его клиенту. Так продолжалось и теперь, но компания нуждалась в развитии эффективной стратегии для работы и с другими категориями клиентов.

Во-вторых, BT необходимо понять, какие категории клиентов должны стать их целевыми группами в условиях сегодняшнего рынка, то есть с точки зрения предложения «новой волны» услуг: широкополосного доступа в Интернет, мобильной связи и информационно-коммуникационных технологий (в частности, услуги беспроводного доступа и обеспечение безопасности). В течение последних лет BT обращала внимание только на объемы телефонных звонков. Однако по мере развития рынка компания диверсифицировала свой портфель продуктов, и ей потребовалась новая сегментационная структура, позволявшая принять во внимание весь новый ассортимент услуг.

С целью решить эти две проблемы BT пыталась найти стратегию сегментации, которая могла бы:

• дать определение рынку небольших и средних компаний, включая не только текущих, но и перспективных клиентов;

• выявить конкретные потребности, для удовлетворения которых она могла бы предложить и продать больше услуг «новой волны»;

• позволить более эффективно распределять ресурсы;

• не только объяснять поведение клиентов в прошлом, но и предсказывать их шаги в будущем.

Мы предложили использовать комплексный подход, при котором компании-клиенты делились бы на группы с учетом как жестких (доходы, потенциал и риск), так и мягких факторов (потребности). Ниже приведен общий обзор такого подхода.

Выбор цели – с кем следует говорить

Жесткая сегментация позволяла сформировать основную характеристику компаний, с которыми хотела работать BT, – компании, стремившиеся к росту доходов. Мягкая сегментация позволила BT сделать общение с потенциальными клиентами более личным, основанным на знании потребностей каждой небольшой и средней компании. В этой главе мы сконцентрируем внимание на деталях жесткой сегментации, а о мягкой поговорим в следующей. (В третьей главе мы обсудим следующие темы: о чем нужно говорить с потенциальными клиентами; способ, с помощью которого BT объяснила небольшим и средним компаниям, каким образом те могли бы наращивать свои доходы; каким образом вы можете комбинировать жесткую и мягкую сегментацию в рамках интегрированного подхода.)

BT понравился этот план, и нам поручили реализовать проект – причем с довольно жестким графиком работ. Мы тут же принялись выяснять, какие ценности компания считает самыми важными. У каждого свои ценности. Для BT понятие ценности клиента состояло из четырех компонентов (как видно из диаграммы, приведенной ниже): сколько денег те отдавали компании в текущий момент времени («Текущие доходы»); какова была вероятность того, что они останутся клиентами компании («Риск потери клиента»); насколько глубокими были их связи с компанией, то есть покупали ли они все, что предлагала BT («Интенсивность лояльности»); какая доля их расходов в категории продуктов BT приходилась на другую компанию («Доля других поставщиков в клиентском кошельке»).

Проще всего было рассчитать величину первого компонента – текущую величину доходов. BT ежемесячно отправляет клиентам счета, в которых указана выставленная им точная сумма. Поэтому все, что от нас требовалось, – это зайти в систему выставления счетов и определить сумму в расчете на каждого клиента (в конкретном случае довольно некрупного). В результате этого простого действия BT могла точно знать, кто из ее клиентов тратит больше всего денег.

Со вторым компонентом – вероятностью сохранения клиента – дела обстояли чуть сложнее. Как только BT утратила свою монополию на рынке телефонных услуг, многие клиенты решили уйти к ее конкурентам. Соответственно, нам нужно было попытаться предсказать вероятность того, когда текущий клиент может уйти от BT, для чего мы выстроили модель «ухода клиентов», основанную на информации от бывших потребителей BT. Если многие из них относились к определенному географическому региону (и уходили вследствие присутствия в этом регионе успешного конкурента), то существующие клиенты, живущие в том же регионе, получают более высокий балл по шкале ухода, то есть обладают большей потенциальной возможностью покинуть компанию. Если мы видим, что бывшим клиентам было свойственно делать больше международных звонков (конкурент предоставлял более выгодные условия по этой услуге), то клиенты, делающие много международных звонков, получают более высокий балл по шкале ухода.

Выстроенная нами модель принимала во внимание такие данные, как общее количество звонков, количество звонков в течение определенного времени дня и недели, а также баланс между местными, региональными и международными звонками. Она позволила выявить места, где наблюдались самые явные различия между бывшими и текущими клиентами. Мы использовали соответствующие переменные, чтобы рассчитать вероятность ухода текущего клиента. В частности, мы создали рейтинг для каждого существующего клиента в базе данных BT по шкале от 1 до 100. Клиент с рейтингом «1» почти гарантированно оставался с компанией. Клиент с рейтингом «100» уже почти захлопнул за собой дверь. Чуть позже в этой главе мы объясним, каким образом работают модели ухода клиента на практике.

Что касается третьего компонента – интенсивности лояльности клиента к BT, – то для его расчета мы придумали собственную модель. Это было особенно важно именно в то время, так как BT пыталась изменить свое позиционирование от поставщика телефонных услуг на поставщика интегрированных коммуникационных технологий, предлагавшего не только телефонные услуги, но и мобильные сетевые решения, решения в области безопасности данных и многое другое.

Мы создали довольно простое решение: проранжировали все продукты BT по шкале от 1 до 5, при этом единица означала базовый продукт, типа стандартной телефонии, а пятерка – продвинутый продукт, наподобие комплексных решений в области сетевой безопасности. Затем мы рассчитали для каждого клиента долю расходов по каждому продукту, приходившуюся на BT.

Позвольте мне детально рассказать о математическом аппарате в приведенной ниже таблице.

Наш результат мы использовали для расчета средневзвешенного показателя сложности продукта для каждого отдельно взятого клиента. Колонка со средневзвешенным значением получила название «Показатель интенсивности».

Далее, для колонки продуктов BT, мы использовали название «Показатель интенсивности продукта». Стационарная связь получила оценку «1», так как это – простой сервис со сравнительно низкой прибылью. Продукты, связанные с обеспечением безопасности, получили отметку «5», потому что были более сложными и позволяли компании получить более высокую прибыль.

Колонки третья и четвертая в разделе «Расходы» показывают, сколько тратит компания B на каждый продукт, а колонки пятая и шестая («Расходы») показывают долю BT в их расходах на продукт. К примеру, компания А тратит 55,6 % своего телекоммуникационного бюджета на стационарную телефонную связь (100–180 долларов).

Для расчета показателя интенсивности (компания A) мы умножали значение показателя на величину расходов в процентах по каждому продукту (например, показатель интенсивности для Интернета, равный двум, умножался на 27,8 % доли общих расходов), а затем складывали вместе все значения в колонке. В итоге компания A получала показатель интенсивности «183». Для компании B нам требовалось умножить значение в колонке «Показатель интенсивности» на значение показателя «Расходы, в %», а результат занести в восьмую колонку. Согласно данным этой колонки, мы видим, что компания B имеет показатель интенсивности «118». Чем выше число, тем ценнее клиент.

Последний компонент – доля в клиентском кошельке, которую BT не получала, – рассчитывается с помощью уже вышеописанной манипуляции с долей кошелька для каждого продукта и услуги, предлагаемых BT. Мы сопоставили этот показатель с данными отраслевых исследований. Например, оказалось довольно простым делом получить данные по расходам на информационно-коммуникационные технологии (ИКТ) для компаний в определенных категориях рынка с разбивкой по размеру компаний и их местонахождению. Всегда полезно проверять правильность созданной модели с помощью сторонних достоверных данных.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*