KnigaRead.com/

Борис Медников - Аксиомы биологии

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Борис Медников, "Аксиомы биологии" бесплатно, без регистрации.
Перейти на страницу:

Вот так в битах информации фон Нейман оценил сложность системы, способной воспроизводить самое себя. Она оказалась довольно большой – порядка миллиона бит, то есть система должна была бы состоять не менее чем из десяти тысяч элементов. Это очень сложная система, современные станки с программой на магнитной ленте много проще.

Но, допустим, мы создали такую машину, ввели в нее ленту с программой для постройки дочерней» машины и запустили ее. Воспроизвели бы мы в металле смену поколений?

Оказывается, нет. «Дочерняя» машина будет бесплодной: ведь в ней нет ленты с программой. Чтобы появилось третье машинное поколение, в машине-родоначальнице нужно предусмотреть лентокопирующее устройство, передающее по наследству копию программы. Итак, согласно Нейману, по наследству передается не структура, а описание структуры и инструкция по ее изготовлению. И весь процесс развития состоит из двух раздельных операций – копирование этой программы (того, что генетики называют генотипом) и постройка собственно организма (того, что они называют фенотипом).

Вот мы и подошли к формулировке первой аксиомы биологии.


Все живые организмы должны быть единством фенотипа и программы для его построения (генотипа), передающегося по наследству из поколения в поколение.


Ничто не ново под луной. Еще в конце прошлого века биолог Август Вейсман сформулировал этот принцип (деление организма на сому и наследственную плазму).

Все последующие успехи генетики и теории информации лишь блестяще подтвердили его.

Многие читатели, возможно, пожмут, плечами: какая разница передается ли по наследству сама структура в виде маленького организма, запрятанного в яйцеклетке или спермии или же программа кодирующая его построение? Что дает новая теория развития (назовем ее генетической) по сравнению с преформизмом?

Что дает? Да все: мы сразу избавляемся от подавляющей картины бесконечной вереницы вложенных друг в друга зародышей. И не нужно отождествлять генетическую теорию развития с преформизмом, как это иногда делают (появился даже термин «неопреформизм»). Делая это, мы отождествляем программу построения структуры с самой структурой. Но это столь же нелепо, как отождествлять страницу из поваренной книги с обедом, рецепт – с лекарством и чертеж автомобиля – с самим автомобилем.

Как и в теории эпигенеза, упорядоченность организма в каждом новом поколении возникает заново.

Но упорядочивающий фактор – не мистическая энтелехия Аристотеля или «существенная сила» Вольфа. Это вполне реальная программа, закодированная, как мы теперь знаем, в длинных нитевидных молекулах дезоксирибонуклеиновой кислоты – ДНК или рибонуклеиновой кислоты – РНК у некоторых вирусов.


Рис. 6. Относительные размеры некоторых вирусов (электронная микрофотография с увеличением в 200000 раз). Слева направо – один из маленьких фагов φX174, вирус табачной мозаики, сложный бактериофаг Т4 (из группы так называемых Т-четных фагов бактерии кишечной палочки).


Порядок организма возникает не из ничего, а из порядка полученной от родителей программы.

Подчеркнем одно обстоятельство. Наша трактовка первой аксиомы функциональна, она не связывает первое условие жизни с каким-либо конкретным химическим веществом. Самовоспроизводящуюся машину можно в принципе построить, вкладывая в нее программу, записанную на магнитной ленте или в совокупности перфокарт или еще каким-либо способом.

Принцип раздельного копирования при совместном существования генотипа и фенотипа остается незыблемым. То же и в жизни. В земных условиях основа фенотипа – белки, основа генотипа – нуклеиновые кислоты. Но не подлежит сомнению, что жизнь во Вселенной бесконечно разнообразна. Где-нибудь на планете системы тау Кита или альфа Эридана жизнь может быть построена на иной структурной основе, но по единому для всей Вселенной принципу. Аксиома № 1 едина для всего живого. Жизнь на основе только одного фенотипа или же одного генотипа невозможна, при этом нельзя обеспечить ни самоподдержания, ни самовоспроизведения сложной специфической структуры.




Рис. 7. Вирус табачной мозаики – первый вирус, который был описан и затем выделен в чистом виде. Вверху слева – схема строения (размеры здесь и далее даются в ангстремах – стомиллионных долях сантиметра). Справа – фотография модели вируса – однонитчатая спираль РНК в шубе из одинаковых молекул белка. Каждую такую белковую молекулу слагают в определенной последовательности 158 аминокислот.


Рассмотрим справедливость нашей первой аксиомы на ряде конкретных примеров. Итак, фенотип не может воспроизводиться без генотипа, и наоборот. Фенотип возникает по программе, кодированной в генотипе, и заодно копирует генотип для будущего поколения. Но возможны случаи, когда генотип копируется при посредстве чужого фенотипа. Тогда порог сложности, определенный фон Нейманом, снимается: возникают простейшие образования – вирусы, на примере которых можно проследить все стадии редукции фенотипа.


Рис. 8 Электронная микрофотография одного из сложных бактериальных вирусов – фага Т2. Хорошо видны молекулы белка, слагающие хвост и голову, а также хвостовые нити (слева). Размеры здесь также в ангстремах.


Самые сложные вирусы – бактериофаги, или просто фаги – паразиты бактерий. Примером могут служить так называемые Т-четные фаги бактерии кишечной палочки. Фаг Т4 напоминает по форме ручную гранату. Головка фаговой частицы – вытянутый двадцатигранник, сложенный из молекул белка, в ней содержится в компактно уложенном состоянии длинная молекула ДНК. Фаг Т4 – имеет сложный механизм для вспрыскивания своего генотипа внутрь бактериальной клетки – хвостовую часть. Хвостовая часть состоит (от головки к концу) из воротничка, собственно хвоста, одетого сократимым, как мускульное волокно, чехлом, и базальной пластинки, от которой отходят шесть нитей. Нитями и зубцами базальной пластинки фаг прикрепляется к клеточной оболочке бактерии. Молекула специфического белка лизоцима на базальной пластинке разъедает оболочку бактерии, хвостовой чехол сокращается, и нить ДНК с огромной скоростью выталкивается, буквально выстреливается в цитоплазму бактерии.


Рис. 9. Подробная схема Т-четного фага; справа показано, как он заражает бактерию. Сначала фаг прикрепляется базальной пластинкой, опираясь при этом на хвостовые нити. Молекула лизоцима на базальной пластинке разъедает стенку бактериальной клетки, хвост сокращается, и нить ДНК выстреливается в бактерию. Фенотип фага после этого отбрасывается, он уже не нужен.


Пустая белковая оболочка – фенотип фага – уже не нужна, она отбрасывается. Эти фаги без нуклеиновой начинки образно называют тенями. Действительно, это всего лишь тени вирусов: они могут, как и живые, прикрепляться к поверхности бактерий и проедать своим лизоцимом в их оболочке отверстия. Они не могут лишь размножаться. «Голая» ДНК в бактерии начинает свою разрушительную деятельность. Прежде всего, за какую-то минуту подавляется синтез бактериальных белков. Через пять минут после заражения белоксинтезирующий аппарат бактерии синтезирует по программе фага ферменты, размножающие фаговую ДНК. Еще через три минуты начинается синтез фаговых белков, формирующих головки и хвосты новых особей фага. Первый новый фаг при температуре 37° появляется через 13 минут, еще через 12 в бактерии их уже свыше 200. Насинтезированный за это время лизоцим разъедает стенки бактерии изнутри, и новые фаговые частицы выходят наружу, готовые заражать другие бактериальные клетки.


Рис 10. Любопытный феномен – дефектные фаги, фаги якобы без генотипа. ДНК фага, войдя в бактерию, может не взорвать ее размножением, а встроиться в бактериальную хромосому и размножаться вместе с ней. Фенотип фага тогда не образуется, фаговая ДНК обходится чужим. Такой фаг, латентный, может вернуться к активному состоянию, если культуру бактерий, зараженных им, облучить ультрафиолетом. Иногда активируется не весь генотип фага, а лишь та часть, которая ответственна за образование хвоста. Тогда в бактерии штампуются сотни хвостов, проедающих ее стенки и выходящих наружу. Они могут убивать бактерий, проедая лизоцимом их стенки, но не размножаться (ведь у них нет головки и в головке ДНК – генотип остался в бактериальной клетке). Дефектные фаги – пиоцины – размножаться сами не могут. Фенотип без генотипа бессилен. Строго говоря, нельзя говорить, что пиоцин не имеет генотипа – он просто держит его в другом месте.


Генотип таких фагов довольно сложен (около ста генов). Но есть и более простые фаги, например φX174, он гораздо меньше Т4 и представляет правильный двадцатигранник без хвостовой части. Его генотип кодирует всего девять белков.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*