Евгений Кунин - Логика случая. О природе и происхождении биологической эволюции
Рис. 11-3. Модель эволюции молекулярных моторов и мембранной биоэнергетики: от РНК-геликазы и мембранного канала к РНК-белковой транслоказе, и далее к ионно-градиентной АТФ-синтазе. Сплошные линии показывают современные непроницаемые для ионов мембраны, прерывистые линии показывают гипотетические «протекающие» древние мембраны. Изогнутая стрелка показывает утечку катионов из клетки. T3SS – система секреции типа 3, белковая транслоказа, распространенная у современных бактерий. В белковых транслоказах центральную позицию временно занимает перемещаемый белок, в то время как в мембранных АТФазах эту позицию занимают соответствующие белковые субъединицы. Сценарий эволюции взят из Mulkidjanian et al., 2007.
От отбора генных ансамблей прямая дорога к отбору содержимого ячеек, когда ячейки, поддерживающие быструю репликацию, «заражают» смежные ячейки и фактически распространяют свои коллективные «геномы»; первичные вирусоподобные частицы могли содействовать этому процессу (Koonin and Martin, 2005). Доклеточный эквивалент ГПГ – перенос генетического содержимого между ячейками – тоже часть этой модели, в согласии с идеей о том, что массовый ГПГ был неотъемлемой частью ранней стадии эволюции жизни. После того как в ходе эволюции эгоистичных кооператоров в сети неорганических ячеек был достигнут определенный уровень сложности, стал возможен «побег» протоклеточных организмов, имеющих сравнительно большие ДНК-геномы и мембраны, содержащие механизмы транспорта и транслокации (изначально развившиеся, согласно модели, в вирусоподобных агентах). Нельзя сказать, как много подобных попыток провалилось моментально и сколько продержалось дольше, но только археи и бактерии (согласно симбиотическому сценарию более позднего возникновения эукариот, как описано в гл. 7) дожили до сегодняшнего дня. Первый успешный «побег» клеточной жизни из гипотетического доклеточного «супа» соответствует дарвиновскому порогу клеточной эволюции, описанному Вёзе, – порогу, за которым ГПГ должен был существенно сократиться и начаться эволюция отдельных линий (видов) клеточных организмов (Woese, 2002).
Как и в других моделях ранних стадий эволюции биологической сложности и, возможно, даже более явно, сценарий «первобытного вирусного мира», описанный здесь, сталкивается с проблемой победы эгоистичных элементов. В главе 10 мы говорили о том, что появление паразитов – черта, присущая любой эволюционирующей системе репликаторов. Если бы первобытные паразиты стали слишком агрессивными, они могли бы уничтожать своих хозяев внутри ячейки и далее выживать, только инфицируя следующую ячейку (где они снова представляли бы опасность). Можно вообразить разрушительную «пандемию», прокатившуюся по всей сети и уничтожившую все ее содержимое, и, скорее всего, именно такой была судьба многих, если не большинства, первобытных «организмов». Примечательно, что математическое моделирование репликаторов заставляет предполагать, что важной движущей силой, определившей появление ДНК, которая привела к разделению роли матрицы и катализаторов на доклеточной стадии эволюции, могла быть повышенная сопротивляемость паразитов в системах со специализированными, выделенными матрицами (Takeuchi et al., 2011). Условием для выживания доклеточных форм жизни было, во-первых, появление умеренных паразитов, которые не убивали хозяина, и, во-вторых, эволюция защитных механизмов, вероятнее всего основанных на РНК-интерференции. Повсеместное распространение умеренно эгоистичных элементов и защитных систем, основанных на РНК-ин терференции, во всех ветвях клеточной жизни наводит на мысль, что эти явления появились на очень ранней, даже, возможно, доклеточной стадии эволюции.
Согласно этому сценарию, в первобытном генетическом резервуаре не существовало четко очерченных границ между эгоистичными генными элементами, которые позже стали вирусами, и большими генными ансамблями, которые в дальнейшем дали начало геномам клеточных форм жизни, хотя расхождение этих двух форм началось, когда паразиты начали «кормиться» на ансамблях «эгоистичных кооператоров». Появление клеток стало и настоящим началом мира вирусов, каким мы представляем его сегодня.
Модель доклеточной эволюции в первобытном вирусном мире, обрисованная здесь, предлагает, по-видимому, правдоподобные, хотя и весьма умозрительные решения многих загадок, связанных с происхождением клеток. Сравнительная геномика вирусов и других эгоистичных элементов дает, как мне кажется, серьезную эмпирическую поддержку этой модели. Учитывая, что, согласно такому сценарию, первые клетки произошли из неклеточного предкового состояния в ходе множественных независимых случаев возникновения протоклеток, кажется осмысленным говорить не о едином предке всех живых форм (LUCA), а о предковом состоянии (LUCAS), описывающем первобытный резервуар вирусоподобных генетических элементов.
Краткий обзор и перспектива
Все существующие формы жизни размножаются как клетки или внутри клеток. Хотя в главе 10 мы рассмотрели сильные аргументы сравнительной геномики в пользу того, что мир вирусов развивался постепенно и квазиавтономно от клеточных форм жизни на всем протяжении эволюции жизни на Земле, факт остается фактом: вирусы не могут размножаться вне клеток. Мы не знаем всех промежуточных стадий эволюции; даже самые простые клетки обладают сложной трансформирующей энергию мембраной, включающей разнообразные транспортные системы, а также обширными ДНК-геномами и сложной системой генной репликации и клеточного деления. Не существует униформистского объяснения эволюции клеток – доклеточная биота, безусловно, разительно отличалась от всей известной нам жизни. В настоящей главе мы обсуждали в основном мир вирусов в качестве сценария эволюции как вирусов, так и клеток. Согласно этой гипотезе, доклеточная стадия эволюции жизни происходила в сети неорганических ячеек, содержащих разнообразную смесь вирусоподобных генетических элементов, которые постепенно превратились в ансамбли «эгоистичных кооператоров» и истинных паразитов. Предполагается, что эти ансамбли генетических элементов были предковой стадией, из которой появились клетки; возможно, речь идет о множестве независимых «попыток», но только две из них (предки бактерий и архей соответственно) дали стабильные клеточные линии, успешные в долговременной эволюционной перспективе.
Исходя из этого гипотетического статуса первобытных форм жизни, давших начало клеткам, предлагается заменить понятие всеобщего предка (LUCA) на всеобщее предковое состояние (LUCAS). LUCA(S) мог довольно сильно отличаться от современных клеток, как нам подсказывает отсутствие гомологии ключевых компонентов репликации ДНК и биогенеза мембран (а также различий в химических структурах липидов) у архей и бактерий. Эти фундаментальные различия между двумя основными доменами клеточной жизни подразумевают неклеточную природу LUCAS. Однако не следует принимать эту модель безоговорочно: несмотря на всю правдоподобность, сценарий неклеточного LUCAS тоже сталкивается с существенными трудностями. Например, в рамках этого сценария сложно объяснить универсальное сохранение частицы узнавания сигнала, рибонуклеопротеиновой машины, которая еще до окончания трансляции встраивает образующиеся белки в мембраны[122].
Какой бы интригующей ни была возможность существования неклеточного LUCAS и как бы ни было важным реконструировать детали этого ключевого предкового состояния, это все же второстепенно для модели мира вирусов. Даже если модель неклеточного LUCAS будет убедительно опровергнута и появятся веские доводы в пользу клеточного LUCA, это не отменит модели доклеточной эволюции, которую мы обсуждаем, – только отбросит ее назад и будет свидетельствовать в пользу единственности успешного возникновения клетки. То же самое справедливо для модели сети неорганических ячеек (подробно рассматриваемых в гл. 12). Даже если эта модель окажется неправдоподобной, в то время как, скажем, модель клеточной эволюции из липидных везикул получит достоверное экспериментальное подтверждение, – и это вряд ли отменит необходимость существования первобытного резервуара генетических элементов. Кратко говоря, вирусоподобный характер генетического резервуара на доклеточной стадии эволюции жизни является логической необходимостью.
Рекомендуемая дополнительная литература
Doolittle W. F., and J. R. Brown. (1994) Tempo, Mode, the Progenote, and the Universal Root. Proceedings of the National Academy of Sciences USA 91: 6,721—6,728.
Обсуждение природы LUCA, в частности, был ли он прогенотой, на заре эры геномики.
Glansdorff N., Y. Xu, and B. Labedan. (2008) The Last Universal Common Ancestor: Emergence, Constitution, and Genetic Legacy of an Elusive Forerunner. Biology Direct 3: 29.
Подробный обзор гипотез и идей касательно LUCA. Согласно модели, предпочитаемой Глансдорфом с коллегами, LUCA был сообществом разнообразных РНК-клеток.