KnigaRead.com/

Павел Бородин - Кошки и гены

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Павел Бородин, "Кошки и гены" бесплатно, без регистрации.
Перейти на страницу:

Мы с вами уже говорили о том, что при оплодотворении каждый из родителей передает будущему ребенку по одной хромосоме из каждой пары. Следовательно, мы можем говорить о хромосомах отцовского и материнского происхождения. Зависит ли как-нибудь расхождение хромосом в мейозе от их происхождения?

Может ли быть так, что в одну из дочерних клеток уходят все хромосомы отцовского происхождения, а в другую — материнского? Поскольку каждая хромосома делает выбор независимо от всех остальных, теоретически возможно образование гаметы, в которую ушли только гомологи отцовского происхождения. Но вероятность возникновения ее очень низка.

Действительно, у кошки 19 пар хромосом. Для каждой хромосомы вероятность попасть в одну из дочерних клеток равна V2 • Тогда вероятность того, что в одну дочернюю клетку попадут все 19 хромосом, равна произведению вероятностей попасть в нее для каждой хромосомы f1/2)19 . Так что попадание всех хромосом одного происхождения в одну дочернюю клетку практически невероятно. Хорошо, а хотя бы двух из них? Это вы можете рассчитать сами. Если для каждой вероятность V2, то для двух — вероятность */4- То есть в четвертой части гамет будут именно эти две хромосомы.

Все эти расчеты вас, наверное, утомили. Но они будут необходимы нам, когда мы обратимся к рассмотрению законов Менделя и их применению к кошке.

Но для того чтобы это рассмотрение было более привязано к кошке, мы прежде познакомимся с полным списком мутантных аллелей, известных сейчас в генетике кошки, и с тем, как эти мутантные аллели влияют на процесс развития.

Глава 2 КРЕМОВЫЙ, БЕЗ ХВОСТА И С ЧЕТЫРЬМЯ УШАМИ


У кошки около 30 тысяч генов. Они распределены по 19 парам хромосом. Каждый ген содержит инструкцию для выполнения какого-то действия, которое в итоге ведет к тому, что из оплодотворенной яйцеклетки возникает кот.

Некоторые авторы научно-популярных книг по генетике называют информацию, которая хранится в ДНК, чертежом организма. Это абсолютно ложная аналогия. ДНК содержит не чертеж, а рецепт развития. В ней записана последовательность событий, которые, взаимодействуя друг с другом, ведут к образованию трехмерного кота. ДНК задает последовательность, в которой соединяются азотистые основания в РНК. РНК задает последовательность объединения аминокислот в белок. Последовательность аминокислот в белке определяет характер упаковки белка в трехмерную структуру и способ взаимодействия этого белка с другими веществами. Трехмерный кот и является «весомым, грубым и зримым» воплощением этих взаимодействий.

Вы понимаете, как точно должна быть отлажена эта система, состоящая из тысяч взаимодействующих элементов. Малейший сбой в ее работе может приводить к очень серьезным последствиям. Сейчас мы кратко рассмотрим наиболее типичные ошибки, которые возникают при создании котов по рецептам, записанным в ДНК. Эти ошибки, вызываемые мутациями, позволяют нам лучше понять, как организован процесс нормального развития.

Здесь принцип простой: пока печень не болит, мы можем не знать, что она у нас есть. А вот когда заболит, мы очень ясно осознаем ее значение для нормального функционирования организма. Пока ген, отвечающий за формирование хвоста у кота, работает нормально, мы не знаем, какой именно ген за это отвечает. Но стоит в нем возникнуть мутации, которая приводит к нарушению развития хвоста, как у нас появляется шанс, простите за незатейливый каламбур, поймать этот ген за хвост, выявить стадию развития, на которой он начинает функционировать, определить его место на хромосоме и характер его взаимодействия с другими генами, и даже расшифровать последовательность нуклеотидов в нем.

Глава эта будет построена таким образом. Мы будем последовательно двигаться от момента оплодотворения до полного завершения развития. Проследим за основными этапами формирования кота как трехмерной структуры, состоящей из сотен тканей, которые, в свою очередь, построены из миллионов клеток. Особо выделим мутации, которые нарушают тот или иной этап развития. Таким образом, мы составим представление о том, как организован процесс развития, развертывания генетической информации, и опишем те мутации, которые известны у котов в настоящее время.

Здесь и далее слова «мутация» и «аллель» употребляются как синонимы. По правилам номенклатуры мы будем обозначать доминантные аллели прописными буквами, а рецессивные — строчными. В тех случаях, когда для гена известно более двух аллельных форм, применяются буквенные индексы.

Итак, процесс развития начинается с оплодотворения. Сливаются ядра сперматозоида и яйцеклетки. Оплодотворение — необходимое условие нормального развития. Возможность развития без оплодотворения мы рассмотрим в отдельной главе, посвященной проблеме непорочного зачатия.

Слияние гаплоидных ядер приводит к образованию диплоидной зиготы. Зигота имеет полный набор генов, необходимых для развития. Ядро зиготы последовательно делится митотическим делением на 2,4, 8 и т. д. ядер. Этот период жизни зиготы называется дроблением. Он завершается образованием морулы — группы клеток, похожей на ягоду малины. Клетки на этой стадии еще'мало специализированы. Их можно менять местами, переносить от одного зародыша к другому, смешивать клетки от разных зародышей без видимого влияния на последующее развитие.

Деления клеток продолжаются. Морула превращается в бластоцисту. В ней будущая судьба клеток уже оказывается предопределенной их положением. Клетки, образующие поверхность бластоцисты, затем будут использованы для построения плаценты. Внутренняя клеточная масса даст начало зародышевой оболочке — амниону и желточному мешку, а из остальных клеток разовьется уже собственно зародыш. Из клеток наружного слоя — эктодермы — образуются нервная система и кожные покровы, включая и шерсть. Внутренний слой — эндодерма — дает начало внутренним органам, например пищеварительному тракту. Из мезодермы — среднего слоя клеток — образуются скелет, мышцы, сердце, печень, почки. Далее дифференцировка все более и более углубляется. Выделяются группы стволовых, инициаторных клеток, которые специализируются на создании определенных органов.

Понятно, что все эти события происходят под контролем определенных генов. Отдельные гены и генные ансамбли согласованно включаются в работу и выключаются. Их продукты активируют одни гены и инактивируют другие. Причем в каждой группе клеток играет свой, специфичный только для нее, генный оркестр, и свою, характерную только для нее мелодию.

На ранних этапах развитие у самцов и самок идет практически одинаково. Хотя стартовые позиции в развитии двух полов разные. Вы помните, что самки имеют две Х-хромосомы, самцы только одну.

В зиготе (а) активны обе Х-хромосомы. В ходе дифференцировки в ннициаторных клетках (6) одна из Х-хромосом — мутантная (светлая) или нормальная (темная) — инактивируется. Инактивированная хромосома обозначена кружком. Потомки иннциаторных клеток строго наследуют инактивированное состояние Х-хромосомы (в). В тех клетках, где инактивирована нормальная хромосома, проявляется мутантный аллель, и наоборот. В результате формируется мозаичная или черепаховая окраска.

Эта неравноценность устраняется в момент дифференцировки стволовых клеток. На этом этапе одна из двух Х-хромосом у самок инактивируется. То есть она перестает быть доступной для считывания с нее генетической информации. Выбор хромосомы, которая претерпевает инактивацию в момент дифференцировки, определяет случай. В одной стволовой клетке оказывается инактивированной Х-хромосома, доставшаяся от отца, в другой — та, что получена от матери. Но дальше в ряду клеточных поколений это инактивированное состояние одной хромосомы и соответственно активное состояние другой строго наследуются. Иными словами, если в стволовой клетке была инактивирована отцовская Х-хромосома, то во всех потомках этой клетки, в том клоне клеток, который от нее происходит, будет инактивирована именно отцовская Х-хромосома. Таким образом, организм самки можно представить как мозаику клеток: в одних функционирует отцовская Х-хромосома, в других — материнская.

Сколько будет клеток одного или другого типа, решает случай. Судите сами: для каждой клетки вероятность того, что у нее будет инактивирована отцовская Х-хромосома, равна 1/г- Если группа стволовых клеток, нацеленных на создание данного типа тканей, велика, то по закону больших чисел мы можем ожидать, что половина всех клеток в этой ткани у взрослого животного будет иметь инактивированной отцовскую хромосому, а другая половина — материнскую. В том же случае, если эта группа малочисленна — в пределах десятка клеток, — возможны самые

разные соотношения типов клеток во взрослом организме. Может быть даже такая ситуация, что во всех клетках данной ткани будет инактивирована одна и та же Х-хромосома, допустим, материнская.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*