KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Ричард Докинз - Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной

Ричард Докинз - Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Докинз, "Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной" бесплатно, без регистрации.
Перейти на страницу:

Взявшись измерять почти какой угодно параметр у животных, мы, очевидно, обнаружим, что, хотя большинство представителей вида имеет значения, достаточно близкие к среднему, у одних особей они немного выше среднего, а у других — ниже. Можно не сомневаться в том, что у предков бархатного ткача существовал разброс по признаку длины хвоста: чьи-то хвосты были короче, а чьи-то — длиннее среднего значения в 3 дюйма. Мы не ошибемся, если предположим, что на длину хвоста влияло большое число генов, эффекты которых, сами по себе незначительные, суммировались друг с другом, а также с влиянием рациона и других факторов среды. В результате получалась реальная длина хвоста особи. Совокупность генов, эффекты которых суммируются, называется полигеном. На большинство наших с вами признаков, например на рост и вес, влияют разнообразные полигены. Математическая модель полового отбора, предложенная Расселом Лэндом, — та, которой я собираюсь придерживаться, — является полигенной моделью.

Теперь мы должны обратить свои взоры на самок и на то, каким образом они выбирают себе партнеров. Допущение, что именно самки выбирают себе партнеров, а не наоборот, попахивает сексизмом. Однако у нас есть серьезные теоретические основания полагать, что дело обстоит именно так (см. “Эгоистичный ген”), да и на практике факты свидетельствуют о том же. Доподлинно известно, что современные самцы длиннохвостого бархатного ткача собирают вокруг себя гаремы примерно из полудюжины самок. Это значит, что в популяции имеется излишек самцов, которые не размножаются. А это, в свою очередь, значит, что самке несложно найти партнера, и она может позволить себе быть привередливой. Самец, который привлекателен для самок, выиграет очень много. А самка, которая привлекательна для самцов, мало от этого выиграет, поскольку на нее и так есть спрос.

Теперь, приняв допущение, что выбор делается именно самкой, переходим к следующему, решающему шагу, которым Фишер поверг своих противников в замешательство. Вместо того чтобы просто признать, что у самок есть прихоти, мы рассмотрим женские преференции как один из тех многочисленных признаков, на которые влияют гены. Предпочтения самки — это количественная переменная, и мы можем предположить, что они формируются под действием полигенов — аналогично тому, как это происходит, собственно, с длиной хвоста. Эти полигены могут влиять на самые разные участки мозга самки или даже непосредственно на ее глаза — на все, что может хоть как-нибудь изменить ее пристрастия. Несомненно, эти пристрастия касаются многих параметров тела самца: оттенка отметин на его плечах, формы клюва и так далее; но так уж вышло, что здесь мы интересуемся эволюцией длинного хвоста у самцов, а следовательно, и женскими предпочтениями, связанными с длиной хвоста. Получается, что мы можем измерять предпочтения самок ровно в тех же самых единицах, в каких измеряем хвосты самцов, — в дюймах. А уж полигены позаботятся о том, чтобы одним самкам нравились хвосты длиннее среднего, другим — короче среднего, а третьи предпочитали хвосты примерно средней длины.

И вот мы подходим к одному из главных озарений во всей этой теории. Гены, отвечающие за женские предпочтения, экспрессируются только через поведение самок, но в организмах самцов тем не менее тоже присутствуют. Справедливо и обратное: гены длины мужского хвоста присутствуют и в организмах самок независимо от того, проявляют они себя там как-нибудь или нет. Представить себе гены, у которых нет возможности экспрессироваться, совсем не сложно. Если мужчина обладает генами длинного полового члена, он может с равной вероятностью передать их как своему сыну, так и дочери. У сына эти гены проявятся, а у дочери, разумеется, нет — по причине отсутствия полового члена как такового. Но, когда у этого мужчины пойдут внуки, сыновья его дочери могут унаследовать его длинный пенис с той же вероятностью, что и сыновья его сына. Организм может быть носителем генов, которые не экспрессируются. Рассудив таким образом, Фишер и Лэнд решили исходить из того, что гены, влияющие на предпочтения самки, переносятся и самцами, даже если проявляются исключительно в женских организмах. А гены мужского хвоста переносятся в организмах самок, пусть даже и не экспрессируясь там.

Давайте вообразим, будто у нас есть особый микроскоп, позволяющий заглянуть прямо внутрь клеток птицы и рассмотреть ее гены. Возьмем самца, у которого хвост вырос длиннее среднего, и посмотрим, что за гены у него в клетках. Начнем с генов, отвечающих за длину хвоста: никаких сенсаций, наш самец несет гены, обусловливающие длинный хвост. Это очевидно, ведь у него есть длинный хвост. Ну а как у него обстоят дела с генами предпочтения той или иной длины хвостов? Эти гены экспрессируются только у самок, так что никаких внешних подсказок у нас нет. Придется воспользоваться нашим микроскопом. Что же мы увидим? Мы увидим гены, которые заставляют самок предпочитать длинные хвосты. И наоборот, если бы мы заглянули внутрь самца с коротким хвостом, то нашли бы там гены, заставляющие самок предпочитать короткие хвосты. Вот это и есть ключевая точка всей аргументации. А объяснение тут такое.

Если я самец и у меня длинный хвост, то весьма вероятно, что у моего отца хвост тоже был длинный. Обычные законы наследственности. Но кроме того, раз моя мать избрала себе моего отца в качестве партнера, значит, она, весьма вероятно, предпочитала длиннохвостых самцов. Следовательно, если я унаследовал гены длиннохвостости от отца, то от матери мне вполне могли достаться гены любви к длинным хвостам. По той же самой причине если вы унаследовали гены короткого хвоста, то велики шансы, что вы носитель генов, которые заставляют самок делать выбор в пользу короткохвостых самцов.

Точно такую же нить рассуждений можно провести и для самок. Если я самка, предпочитающая длиннохвостых самцов, то высоки шансы, что и моя мать тоже оказывала им предпочтение. Таким образом, у моего отца, раз его выбрала моя мать, хвост, скорее всего, был длинным. Следовательно, если я унаследовала гены любви к длинным хвостам, то с высокой вероятностью у меня есть и гены, обусловливающие образование длинного хвоста, — неважно, проявляются они в моем женском организме или нет. А если я унаследовала гены любви к коротким хвостам, то вполне можно предположить, что заодно мне достались и гены обладания коротким хвостом. Общий вывод таков. Любая особь независимо от пола с большой вероятностью несет в себе как гены, которые наделяют самцов неким признаком, так и гены, которые заставляют самок предпочитать тот же самый признак, каким бы он ни был.

Выходит, что гены мужских признаков и гены, заставляющие самок предпочитать эти признаки, не перемешиваются в популяции случайным образом, а стараются держаться вместе. Такая “взаимная тяга”, известная под устрашающим научным названием “неравновесное сцепление”, вытворяет с уравнениями математической генетики забавные штуки. Она приводит к странным и удивительным последствиям, не самыми мелкими из которых в реальной жизни являются, если только Фишер и Лэнд правы, взрывные эволюционные процессы, приведшие к возникновению многих органов привлечения, таких как хвост павлина или бархатного ткача. Выводятся эти последствия только при помощи математики, но их суть можно изложить и словами, и мы постараемся придать нематематическому языку легкий привкус математического доказательства. Нашему разуму снова понадобятся беговые кроссовки, хотя в данном случае больше подошла бы аналогия с ботинками для скалолазания. Каждый шаг этих рассуждений довольно прост, но к вершине понимания ведет целый ряд таких шагов, и если пропустишь хотя бы один, то всех последующих, увы, уже не одолеть.

Итак, мы признали, что возможен непрерывный спектр женских предпочтений: начиная от любительниц длиннохвостых самцов и заканчивая самками с диаметрально противоположным вкусом, предпочитающих самцов с короткими хвостами. Но если бы нам довелось проводить социологический опрос среди самок какой-то конкретной популяции, то мы, вероятно, обнаружили бы, что у большинства из них вкусы в отношении самцов сходятся. Имеющийся разброс женских предпочтений мы можем измерить в тех же самых единицах, в каких мы выражаем разброс длины мужских хвостов, — в дюймах. В дюймах же можно выразить и среднее значение той длины, какую предпочитают самки в популяции. Может оказаться так, что среднее значение женского предпочтения полностью совпадает со средней длиной мужского хвоста — 3 дюйма и в том и в другом случае. Тогда выбор самки не будет движущей силой, направляющей эволюцию длины хвоста у самцов. А может оказаться, что самки в среднем предпочитают хвосты значительно большей длины, чем есть на самом деле, — скажем, 4 дюйма вместо трех. Давайте пока что оставим в стороне вопрос о причине такого несоответствия, просто примем его как факт и перейдем к следующему очевидному вопросу. Если большинству самок нравятся самцы с четырехдюймовыми хвостами, то почему же на самом деле у большинства самцов хвосты трехдюймовые? Почему средняя длина хвоста в популяции не увеличится до 4 дюймов под влиянием осуществляемого самками полового отбора? Каким образом между средней предпочитаемой длиной хвоста и средней фактической длиной хвоста может сохраняться дистанция в целый дюйм?

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*