KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Карл Циммер - Микрокосм. E. coli и новая наука о жизни

Карл Циммер - Микрокосм. E. coli и новая наука о жизни

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Карл Циммер, "Микрокосм. E. coli и новая наука о жизни" бесплатно, без регистрации.
Перейти на страницу:

«Мы больше не можем быть уверены, что везде, куда ни посмотри, имеется жизнь», — сказал Ледерберг репортерам.

Ледерберг и его коллеги считали, что неудача «Викинга» — недостаточная причина для того, чтобы прекратить поиски жизни. Ученые призывали NASA к созданию «сына “Викинга”» — новой межпланетной станции, которая отвезла бы на Марс новый набор инструментов и приборов. Но NASA тогда больше интересовали астронавты[35] — резервуары с E. coli, по определению Ледерберга. Интерес к экзобиологии упал, и Ледерберг вновь вернулся к животрепещущим вопросам биологии, таким как появление новых болезней и угроза биологической войны. Его звездные дни в профессии подошли к концу.

Двадцать лет спустя у NASA вновь пробудился интерес к поискам внеземной жизни. Внутри метеорита, прилетевшего на Землю с Марса, обнаружились странные следы, которые, по предположению ученых, могли представлять собой окаменелости микроорганизмов. Тем временем межпланетная станция «Галилео» пролетела мимо Европы, спутника Юпитера, и прислала на Землю детальные фотографии ледяного панциря, покрывающего ее поверхность. Может быть, подо льдом скрывается жизнь? Наука, занимающаяся поисками внеземной жизни, которую теперь называют астробиологией, вновь получила поддержку NASA, основавшего в 1998 г. Институт астробиологии NASA.

Сегодня многие астробиологии занимаются поиском таких мест на Земле, где, несмотря на экстремальные условия, существует жизнь. E. coli — выносливое существо, но ученым удалось обнаружить немало других организмов, способных выжить в местах, где E. coli погибла бы очень быстро. Это и залитые кислотой шахтные стволы, и лишенные кислорода трясины, и глубины ледников, и перегретые воды гидротермальных источников, и полости соляных кристаллов. Планеты и луны с подобными условиями могли бы оказаться подходящим обиталищем для жизни.

Но какими бы странными ни были некоторые из обнаруженных видов, все они разделяют фундаментальные черты E. coli. Все они представляют собой мембраны, внутри которых собраны белки и ДНК. Для роста им необходимы источники углерода и энергии. И еще им необходима жидкая вода — среда, в которой могут протекать химические реакции. Если перенести некоторые из самых выносливых организмов Земли к какому‑нибудь подземному гидротермальному источнику на Марсе — или, к примеру, под ледяную корку спутника Сатурна Энцелада, — они, возможно, смогли бы там выжить, хотя и с трудом.

Тем не менее ученые остро чувствуют, что жизнь на Земле может и не быть образцом для всей жизни во Вселенной. Это стало особенно очевидно после наших собственных экспериментов с жизнью. Расширение генетического кода E. coli не убивает бактерию, и нет оснований считать, что жизнь на других планетах не могла бы использовать для строительства белков другие аминокислоты. Вся жизнь на Земле для кодирования генетической информации пользуется четырехбуквенным языком. Но ученым уже удалось модифицировать E. coli с использованием искусственных оснований — иными словами, удалось расширить алфавит жизни, добавив к нему новые буквы. Чем дальше, тем больше синтетическая биология сливается с астробиологией.

Можно допустить даже, что жизнь способна вообще обойтись без ДНК. Некоторые эксперименты позволяют предположить, что та же структура — прочная основа и последовательность соединений, несущих информацию, — может быть реализована на основе других молекул. Не исключено даже, что эти молекулы будут способны точно себя копировать. Некоторые ученые рассуждают даже о том, что жизнь в принципе может существовать без жидкой воды. Вместо нее соответствующую роль может выполнять другая жидкость, к примеру жидкий метан.

Но из чего бы ни состояла внеземная жизнь, ее открытие, безусловно, сильно изменило бы наши представления о жизни вообще. Это событие дало бы наконец нам возможность искать закономерности жизни на примере больше чем одной планеты. Ученые, вероятно, начали бы исследование внеземной жизни с самых низких ее уровней и попытались бы определить, как она хранит генетическую информацию. Но черед самых интересных сравнений пришел бы позже. Всю без исключения жизнь на Земле объединяет не только ДНК. И E. coli, и слон выживают в меняющемся мире благодаря устойчивости своих генетических схем. Естественный отбор определяет срок их существования и управляет сложной социальной жизнью, полной самопожертвования и обмана. Барьеры делят живые системы на отдельные организмы, но вирусы объединяют их все в единую генетическую матрицу. Внеземная жизнь показала бы, насколько универсальны эти свойства.

Если бы внеземная жизнь оказалась во всем похожей на земную, ученым пришлось бы выбирать из двух возможных вариантов. Может быть, одна и та же биология возникла независимо в разных мирах, а может, она путешествует по Вселенной от мира к миру.

Греческий философ Анаксагор, живший в V в. до н. э., объявил, что жизнь на Земле возникла из семян, распространяющихся по всему космосу. Процесс переноса жизни он назвал панспермией. В XX в. Фрэнсис Крик и некоторые другие видные ученые вновь, и не единожды, выдвигали теорию панспермии в различных формах. Они предположили, что начало всей жизни на Земле дали некие споры жизни, упавшие на Землю несколько миллиардов лет назад. Теория панспермии была встречена с большими сомнениями, поскольку ее сторонники не могли предъявить никаких доказательств того, что жизнь существует на других планетах или что она способна пережить межпланетное путешествие. Более того, сама концепция панспермии совершенно неудовлетворительна, потому что никак не объясняет происхождение жизни. Она просто отодвигает границы проблемы.

Панспермия и теперь вызывает серьезный скептицизм, но сегодня ученые по крайней мере могут говорить о ней на конференциях и не бояться быть осмеянными. На ранних этапах существования Солнечной системы большие метеориты очень часто падали на планеты, выбрасывая их вещество в космос. В некоторых случаях это вещество могло со временем достигнуть других планет. Путь с Марса на Землю особенно удобен, потому что эти планеты расположены достаточно близко друг к другу и поле тяготения у Марса намного слабее. Даже в наше время, по оценкам ученых, на Землю каждый год падает около 15 метеоритов с Марса. Планеты могут обмениваться кусочками своего вещества и на куда более далеких расстояниях. Куски скальной породы с Земли вполне могли добраться до лун Юпитера и Сатурна. Более того, по одной из оценок, камень с Земли, возможно, падает на спутник Юпитера Европу каждые 50 000 лет. Конечно, для нас 50000 лет — невообразимо долгий срок, но в масштабах истории Солнечной системы это не более чем дождь с градом.

Если эти исследования верны, возможно, что какая‑нибудь группа E. coli унеслась когда‑то, тысячи лет назад, на метеорите в межпланетное пространство. Для большинства микроорганизмов подобное путешествие не могло не закончиться фатально. Одни погибли бы от жесткого космического излучения, от которого обитателей Земли защищает плотная атмосфера. Другие умерли во время огненного спуска на другую планету. Но несколько микроорганизмов все же могло уцелеть. А для заселения плодородной планеты их и нужно‑то, согласно выводам Ледерберга и его коллег, всего несколько. Некоторые ученые даже считают, что подобные путешествия могли сыграть положительную роль и сохранить жизнь в Солнечной системе. Дело в том, что столкновение с достаточно крупным объектом могло вскипятить и полностью испарить все океаны Земли — и уничтожить жизнь на планете, практически стерилизовав ее. Потребовались бы миллионы лет, чтобы испарившаяся вода собралась в тучи и вновь выпала дождем на землю, сделав ее пригодной для жизни. В этой ситуации жизнь на время тяжких испытаний могла найти себе убежище на Марсе или где‑то в другом месте.

Крайнюю форму панспермии предложил в 2004 г. ирландский астроном Уильям Нэйпир. Он утверждал, что камни, выбитые с одной из планет нашей Солнечной системы, могли вообще улететь за ее пределы. Там, далеко, на безопасном расстоянии от Солнца, улетевшие вместе с камнем микроорганизмы не будут страдать от его ультрафиолетового излучения. Некоторые из этих камней могут закончить свой путь на планетах, обращающихся вокруг иных звезд, где микроорганизмы могут найти новый гостеприимный дом. Конечно, эти планеты тоже содрогаются от ударов небесных тел и посылают собственную жизнь в другие солнечные системы. По оценкам Нэйпира, при помощи такой межзвездной инфекции всего за несколько миллиардов лет вся Галактика оказалась бы заражена жизнью.

Это возвращает меня к мысли о чашке с E. coli, которую я поднял к усеянному звездами небу. В некоторые ночи в некоторых местах Земли можно разглядеть в космосе Международную космическую станцию. E. coli тоже там, наверху. Она плавает в телах астронавтов, в питьевой воде, в водяных капельках на стенах орбитальной станции. Удалось ли ей проникнуть дальше? Беспокойство Ледерберга по поводу заражения других планет никуда не делось. Какие бы меры ни принимали создатели автоматических межпланетных станций, судя по всему, кое — какие особенно стойкие существа умудряются устроиться на их поверхности и отправиться в далекий путь.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*