Станислав Галактионов - Беседы о жизни
Совсем по-иному протекают химические реакции в присутствии ферментов (такие реакции называют ферментативными). Во-первых, каждый фермент исключительно разборчив: он помогает вступить лишь в строго определенную реакцию строго определенным веществам, иногда даже только одной-единственной паре. Во-вторых, неизмеримо возрастает скорость реакции: за одну секунду молекула фермента вовлекает в реакцию (соединяет, или разделяет, или осуществляет перестановку атомов) от нескольких тысяч до нескольких сотен тысяч пар молекул субстрата — так называют соединение, в отношении которого активен данный фермент.
Причем каждый фермент, как упоминалось, отличается в этом смысле изрядной привередливостью. Часто он «запрограммирован» на определенную реакцию столь жестко, что не приемлет малейших изменений структуры молекулы субстрата. Даже введение в структуру молекулы, состоящей, к примеру, из двух десятков атомов, одного-единственного добавочного атома и к тому же в положении, удаленном от участвующих в реакции атомов молекулы, чутко улавливается «специализированным» ферментом: он не катализирует реакцию с участием такого вещества.
С учетом столь замечательных свойств ферментов можно дать хотя бы в самых общих чертах объяснение способов реализации в клетке всех тех процессов, о которых шла речь выше. Например, располагая подходящим набором ферментов, можно через последовательность определенных химических реакций получить нуклеотиды: ну хотя бы из веществ, поступающих в клетку извне. Действительно, была бы под рукой совокупность необходимых химических элементов.
Нам, конечно, укажут, что для синтеза какой-либо молекулы необходимы не только определенные исходные вещества, а, вообще говоря, еще и источник энергии. Но чего не сделаешь, имея в руках ферменты! Ее всегда можно получить за счет какой-нибудь другой реакции (опять же катализируемой соответствующим ферментом), при которой происходит выделение энергии. Причем существует если не четыреста, то все же вполне достаточное число сравнительно честных способов ее передачи. (Стоит ли говорить, что происходит это только при участии ферментов!) Поэтому-то клетка и нуждается в питании — постоянном притоке веществ, способных при реакции с общедоступными соединениями (прежде всего кислородом) выделять энергию. Вот на что уходит значительная часть тех самых калорий, о которых нам твердят врачи, запрещая есть жирную свинину и макароны!
Перед тем, как приступить к делу
Мы полагаем, что в этом месте естественное желание читателя захлопнуть книгу и никогда ее больше не открывать должно скачкообразно усилиться. В самом деле: объяснить присутствие в клетке четырех сложноватых, но вполне заурядных соединений тем, что в ней есть сотни веществ не просто необычных, но прямо-таки фантастических по своим свойствам! Не уважаемым ли авторам принадлежит известный рецепт поимки десяти львов: поймать двадцать и десять выпустить? Мало того, выходит, что молекулярные процессы и механизмы, приводящие в результате к появлению белковых молекул, зависят — да еще как зависят! — от деятельности самих белков (ибо, напомним, ферменты — это белки)?
Приходится оправдываться тем, что все, написанное на предыдущих страницах, — правда. И если нам пришлось заговорить о ферментах, то лишь потому, что мы твердо знаем: вся оставшаяся часть книги будет в основном посвящена как раз этим загадочным веществам.
И наконец, самое важное: на этом частном примере мы столкнулись с главной особенностью структуры биологии как науки — циклической взаимообусловленностью понятий. В физике, к примеру, почти все можно выстроить по цепочке: на основании знания свойств элементарных частиц объясняется структура атомных ядер, с помощью законов, определяющих взаимодействие ядер и электронов, описываются свойства атомов и молекул, которые, в свою очередь, могут послужить основой для объяснения процессов, происходящих в твердых телах, жидкостях и газах. Начало этой цепочки теряется в туманном мире элементарных частиц, конец — в тех областях астрофизики, где простейшим объектом служит галактика. Поэтому при изложении основных физических проблем можно быть строго последовательным, вводя необходимые понятия по мере усложнения объекта повествования, а не привлекать (с просьбой временно принять на веру) понятия, определение и полное истолкование которых станет возможным лишь в ходе дальнейшего изложения. Это не значит, что в книгах по физике такого не встречается, но в принципе этого всегда можно избежать.
Очевидно, однако, что на практике при таком последовательном изложении приходится начинать с какого-то уровня знаний свойств физических объектов, который предполагается уже известным. В самом деле, не начинать же, скажем, рассказ о гидродинамике со свойств элементарных частиц! Образно говоря, чтение книг по физике требует предварительного внесения иногда очень значительного вступительного взноса, но после этого автору можно быть строго последовательным.
И совершенно иная картина в биологии: чтобы объяснить строение, возникновение и функции нуклеиновых кислот, совершенно необходимо хотя бы что-нибудь знать о свойствах ферментов; наоборот, структура, а следовательно, и свойства ферментов могут быть объяснены лишь после того, как будет хоть что-нибудь известно о нуклеиновых кислотах. В таком виде эта проблема возникла перед авторами; конечно, можно выбрать в качестве узловых точек совершенно иные понятия, но мы беремся утверждать, что всякая попытка изложить замкнутую биологическую концепцию непременно столкнется с этой проблемой. (Это, разумеется, не относится к изложению избранных участков такого «цикла».)
Таким образом, знакомство с истинно биологическим сочинением невозвращаемого вступительного взноса не требует. Требуется лишь внести задаток, который честно будет возвращен в конце, причем в большинстве случаев — с процентами.
Но так или иначе, а до проблем, связанных с ферментами, мы бы все равно добрались — неважно, с какого именно процесса, происходящего в клетке, началось бы наше изложение. Хотя, разумеется, избранный нами путь не случаен, и то, что мы прошли (вернее, пронеслись) по пути ДНК―РНК―белок, поможет нам в дальнейшем. Отныне мы будем почти всегда говорить о белковых молекулах: об их свойствах, структуре, функции. А их значение для жизненных процессов, по-видимому, уже понятно; во всяком случае, должно быть ясно, что переоценить это значение почти невозможно.
В самом деле, мы попытались проследить за процессом «чтения» закодированной в молекулах ДНК наследственной информации — инструкции, необходимой организму для самовоспроизведения. Познакомились с четырехбуквенным алфавитом языка, на котором написаны сотни томов этой инструкции. Узнали, как снимается копия инструкции и как она с помощью РНК переводится на более понятный организму язык аминокислот. Нам известен важнейший элемент механизма такого перевода — генетический код, словарик, ставящий в соответствие триплеты нуклеотидов и аминокислоты. Знаем теперь, что наследственная информация находит свое воплощение в молекулах белка. А раз так…
А раз так, резонно заметит скептический читатель, так ли уж много оснований для горячих восторгов по поводу блестящих достижений молекулярной биологии? Ибо в результате всех этих грандиозных свершений мы узнали всего лишь следующее: по неизвестным нам пока причинам текст инструкции организму переписывается с помощью особого хитроумного механизма с незнакомого нам языка, в котором есть всего четыре буквы, на язык, в котором есть двадцать букв. Короче говоря, мы оказались в положении Леграна, героя рассказа Э. По «Золотой жук», который с большим трудом расшифровал инструкцию поиска клада, составленную пиратами, и получил… бессвязный набор слов. Спасибо, хоть слова эти были на родном, английском, языке.
Как вы, несомненно, помните, Легран преодолел все трудности, прочел инструкцию и нашел клад. Сумеет ли современная молекулярная биология «прочесть» информацию, записанную на языке белковых молекул, ответит будущее. В любом случае поиски разгадки этой тайны (пусть и менее романтичной, чем тайны пиратов Карибского моря) уже начаты, и кое-что стало проясняться.
Глава 2. Молекулярная архитектура белков
Не будем скрывать: покончив с первой главой, авторы (а возможно, и читатель) испытали некоторое облегчение. В конце концов цель ее заключалась лишь в том, чтобы дать читателю сведения, необходимые для понимания последующих глав, хотя, откровенно говоря, мы не сомневались, что большая часть этих фактов и без того уже ему известна. В нашем изложении, однако, первая глава имеет и иное назначение: выделить круг проблем молекулярной биологии, которые связаны только с передачей и преобразованием наследственной информации, полностью отвлекаясь от физических механизмов ее передачи. Разумеется, такой описательный подход к делу (вообще говоря, типичный для биологической литературы) не может удовлетворить истинно любознательного читателя, которому может показаться, что авторы ущемляют его интеллектуальные права, замалчивая самое интересное — колесики и винтики этих самых физических механизмов.