KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Мик О'Хэйр - Почему у пингвинов не мерзнут лапы? И еще 114 вопросов, которые поставят в тупик любого ученого

Мик О'Хэйр - Почему у пингвинов не мерзнут лапы? И еще 114 вопросов, которые поставят в тупик любого ученого

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Мик О'Хэйр, "Почему у пингвинов не мерзнут лапы? И еще 114 вопросов, которые поставят в тупик любого ученого" бесплатно, без регистрации.
Перейти на страницу:

В таких играх, как крикет, в которых используются мячи со швами, у подающих есть дополнительные возможности создать прямое или обратное вращение с помощью турбулентности. Опытные игроки могут подать мяч так, что он закрутится швом к воздуху под определенным углом. Шов влияет на поток воздуха, вызывает турбулентность пограничного слоя только на той стороне, где есть этот шов. Когда позднее пограничный шов отделяется, мяч закручивается непредсказуемо.

При достаточно быстрой подаче можно закрутить мяч в обратную сторону. Если мяч летит с огромной скоростью (более 130 километров в час), как бывает при подаче игроков мирового класса, воздух движется настолько быстро, что пограничный слой становится турбулентным еще до того, как достигнет области шва на мяче. В этом случае шов отталкивает пограничный слой, способствует его отделению от мяча раньше со стороны шва. После этого мяч неожиданно отклоняется в противоположном направлении. Это и есть знаменитый крученый мяч.

Такого же эффекта могут добиться рядовые игроки в крикет, если у них заслуженный мяч: на шероховатой поверхности турбулентный пограничный слой образуется легче. Разумеется, умышленная порча мяча запрещена правилами. – Ред.

Обратное отклонение пластмассового футбольного мяча происходит из-за отделения пограничного слоя. Сбоку от мяча, где относительная скорость воздуха и мяча больше, поток воздуха в пограничном слое становится турбулентным. С другой стороны он остается ламинарным. Ламинарный пограничный слой отделяется от поверхности мяча сразу же, как только поток воздуха перестает прижимать его к поверхности. В отличие от него, турбулентный пограничный слой остается в контакте с поверхностью мяча дальше по его окружности. В итоге задняя по ходу движения часть мяча отклоняется в направлении, противоположном его вращению. Возникает сила, направленная к боку мяча, который движется в направлении, противоположном потоку воздуха (справа налево – для мяча, закрученного по часовой стрелке).

Эксперименты показывают, что основной фактор, управляющий отклонениями мяча, – отношение скорости вращения его поверхности к скорости прямолинейного движения. Обратное отклонение наблюдается, когда это соотношение мало (меньше 0,4), а эффект Магнуса проявляется при более высоких соотношениях. Этим объясняется, почему быстро крутящийся теннисный мяч вращается в направлении, противоположном футбольному.

Оливер Харлен

Университет Лидса,

Западный Йоркшир, Великобритания

Отклонение вращающегося мяча обычно приписывают эффекту Магнуса, но еще за 100 лет до Гейнриха Магнуса Бенджамин Робинс изучал вращение пушечных ядер, а в 1742 году опубликовал подробное объяснение, почему ядра даже в безветренные дни отклоняются от траектории.

Брайан Уилкинс

Веллингтон, Новая Зеландия

В настоящее время во многих публикациях эффект называется эффектом Магнуса–Робинса. Не следует забывать, что еще в 1672 году Исаак Ньютон писал о том, как вращение влияет на полет ядра. – Ред.

Красное каление

«Чем вызвано появление разных цветов на чистой поверхности закаливаемого железа или стали после нагревания и охлаждения? Цвета варьируются от желтого при нагревании металла до 200 °C до золотистого, коричневого, лилового, синего и, наконец, черного при нагревании до 600 °C. И поскольку окисленная голубоватая или лиловая поверхность встречается у стальных часовых механизмов, прекрасно сохранившихся с XIX века, хотелось бы узнать, какова физическая природа этого прозрачного и очень стойкого цветного слоя?»

Джон Роуленд

Аллесири, Дербишир, Великобритания

Горячие печные газы, применяемые для тепловой обработки стали, окисляют элементы, содержащиеся в сплаве, например хром, чтобы образовать тонкую поверхностную пленку. Эта пленка искажает видимые световые волны и создает цветовые эффекты, о которых упоминает автор вопроса.

Толщина пленки определяет видимый цвет стали, поскольку она влияет на распространение света с разной длиной волны. Более тонкие пленки, образующиеся при низких температурах, кажутся желтыми или золотистыми. Толстые пленки на стали – светло-голубыми. Самые толстые пленки иссиня-черные или черные.

Цвета закалки на чистой стали нестойкие, обычно они пропадают, если от ржавчины увеличивается толщина поверхностной пленки, где образуются наслоения окислов железа. Многие детали часов, упомянутых в вопросе, обязаны стойкостью цветов закалки практике выдерживания закаливаемой стали в жире кашалота. Этот жир создает прозрачное восковое защитное покрытие на оксидных пленках и надолго сохраняет их цвет. Широкое применение этого метода имело один недостаток: оно стало причиной сокращения численности кашалотов.

Дейл Макинтайр

Дхаран, Саудовская Аравия

Воздушный пузырь

«Мы провели опыт, о котором нам рассказывали учителя естествознания: стоящую в воде свечу надо накрыть перевернутым стаканом. Когда свеча гаснет, уровень воды в стакане повышается.

Нам объяснили, что повышение уровня воды вызвано тем, что при горении свечи расходовался кислород. Но мы поставили под стакан четыре свечи вместо одной, а уровень воды поднялся гораздо выше. Почему?»

Эмма, Ребекка и Эндрю Фист

Норвуд, Тасмания, Австралия

Вопрос Эммы, Ребекки и Эндрю о вполне понятном эксперименте со одной свечой или несколькими свечами показывает, как молодые и пытливые умы опровергают ошибочные объяснения, которые школьные учителя физики повторяют десятилетиями.

Поглощение кислорода может отчасти быть причиной повышения уровня воды, потому что данный объем на моль кислорода сожжет углерод воска с образованием примерно такого же объема на моль углекислого газа и водород с образованием двух объемов на моль водяного пара соответственно.

Первый частично растворится в воде, а последний почти полностью конденсируется. Это приведет к чистому уменьшению объема пара.

Но все это – второстепенные детали, главное – тепло, созданное горящей свечой или свечами. К тому времени, как мы накрываем их перевернутым стаканом, свечи успевают повысить температуру вокруг них сильнее, чем сделала бы одна свеча.

Когда свеча или свечи гаснут, окружающий их воздух сжимается, поскольку остывает, а степень сжатия прямо пропорциональна начальной средней температуре объема воздуха под стаканом. Так что чем больше свечей, тем больше тепла, тем выше температура и выше уровень воды в стакане при охлаждении воздуха.

Вот наглядное доказательство того, что нельзя верить учителям на слово, не задав предварительно несколько вопросов по существу.

Леопольд Флатин

Вена, Австрия

Поздравляю детей, которые экспериментально опровергли хрестоматийное заблуждение насчет свечи, перевернутой банки, емкости с водой и предположительного выжигания всего кислорода из банки.

Увидев, как четыре горящие свечи заставили уровень воды в банке подняться еще выше, они поняли, что основная причина этого эффекта – тепло свечей, от которого воздух в банке расширяется. Они наверняка заметили, что при расширении воздух издавал булькающие звуки, выходя из-под края банки. После того как свечи потухли, наступила краткая пауза, и только потом уровень воды поднялся – когда оставшийся воздух остыл и снова сжался.

Пламя свечи сжигает лишь небольшую часть имеющегося в его распоряжении кислорода. Поэтому неверным будет утверждение, что этот эксперимент можно объяснить изменением количественного содержания кислорода в воздухе.

Иен Расселл

Interactive Science Limited,

Хай-Пик, Дербишир, Великобритания

Отчасти этот эффект вызван толщиной трех дополнительных свечей. Его можно добиться, используя одну свечу переменной толщины. Чем толще свеча, тем выше поднимается вода.

Вода в стакане или в банке втиснута в промежутки между свечами и стеклом. Чем у́же эти промежутки, тем выше поднимется вода.

Питер Макгрегор

Гринок, Стратклайд, Великобритания

Дутая величина

«Почему шарики с гелием так быстро сдуваются? Когда дети приносят из гостей домой шарики, то гелиевые уже на следующее утро становятся маленькими и сморщенными. Я понимаю, что гелий должен выходить из них, но, видимо, не только в этом дело, потому что обычные шарики, наполненные воздухом, остаются надутыми гораздо дольше».

Джон Сторр

Грейт-Корби, Камбрия, Великобритания

Гелий – легкий, одноатомный газ без вкуса, цвета и запаха. В итоге частицы гелия – самые маленькие по сравнению с частицами других газов. Его атомы имеют диаметр всего 0,1 нанометра и вполне способны в процессе диффузии проникать сквозь металлическую пленку. Поскольку гелий проникает даже сквозь мелкие поры, его используют для обнаружения утечек в промышленных и лабораторных вакуумных системах. Молекулы азота и кислорода гораздо крупнее, чем атомы гелия, а это значит, что они не могут проникнуть сквозь стенки шарика. Это все равно что просеивать через сито песок и мелкие камешки: песок утекает через него без труда, потому что он состоит из более мелких частиц.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*