Валерий Глазко - Кризис аграрной цивилизации и генетически модифицированные организмы
Инстинкт самосохранения и увеличение плотности населения приводил к все ускоряющемуся развитию методов создания искусственной среды обитания и получения продуктов питания. При этом имелась иллюзия о бесконечности природных ресурсов и необходимости только научиться их полноценно использовать. Известен лозунг начала 20 века о том, что мы не можем ждать милостей от природы... Это реализовалось в технической революции конца XIX — начала XX веков. В XX веке началась эпоха химизации сельского хозяйства. Наконец, к 60-м годам XX века агрессивное отношение человека к окружающей среде привело к постепенной глобализации экологических изменений, даже к изменениям климата. Может быть, именно инстинкт самосохранения и привел к мощному развитию в этих годах космических исследований.
Однако ничего особо утешительного они не принесли. Стало очевидным, что при столь стремительных экологических изменениях человек не сможет успеть найти себе новую среду обитания на другой планете, то есть поступить так, как он поступал обычно в соответствии со своей биологически запрограммированной стратегией поведения: истощив один регион — мигрировать в следующий. Проблема обострилась еще и тем, что в результате техногенной революции, химизации сельского хозяйства и медицины, среда обитания человека оказалась насыщенной их отходами, различными генотоксическими и мутагенными веществами, для которых отсутствуют государственные границы и различия в уровнях жизни различных слоев населения. Появились новые болезни, а старые — приобрели новые качества, их возбудители уже несут устойчивость к широкому спектру антибиотиков. Насыщенность среды обитания продуктами искусственного химического синтеза, ксенобиотиками, привела к массовым изменениям работы иммунной системы у человека. Широкое распространение получили аутоиммунные заболевания. Принято считать, что около 80% онкологических заболеваний человека обусловлено загрязнением окружающей среды генотоксическими агентами и процент их каждый год последовательно нарастает.
Настало время, когда возможность самосохранения человека как вида путем агрессивного изменения окружающей среды становится принципиально нереальной. Где же выход?
Один из таких выходов — не бороться с природой, а подражать ей. В принципе, всю жизнь человек пользовался этим путем, создавая новые формы животных и растений, нужные для него. Всю историю человечества, начиная с одомашнивания первого животного, первого растения, происходила их совместная, сопряженная эволюция. Проблема заключалась только в том, что скорость этой эволюции сельскохозяйственных видов была много меньше, чем нужно человеку.
Крайне остро этот разрыв стал ощутим именно в 20-м веке. Тут и появилась эта новая задача — для того, чтобы выжить, человечеству нужно научиться управлять скоростью эволюции живых организмов. А как это сделать?
Подсмотреть, как эволюционируют виды в живой природе, и попробовать использовать ее приемы. С постановки такой задачи и начала развиваться генная инженерия, методы получения генетически модифицированных организмов.
Генетика оформилась как наука в начале XX века после переоткрытия законов Менделя. Бурный вековой период ее развития ознаменован в последние годы расшифровкой нуклеотидного состава геномной ДНК десятков видов вирусов, бактерий, грибов и вслед за ними ряда многоклеточных организмов — растение арабидопсис (Arabidopsis thaliana), нематода (Caenorhabdltis elegans), дрозофила, человек. Полным ходом идет секвенирование ДНК хромосом важных культурных растений — риса, кукурузы, пшеницы.
Кроме этого появилась и бурно развивается генная терапия наследственных болезней, производство генетически измененных форм растений, успешное соматическое клонирование млекопитающих, появление молекулярной палеогенетики — впечатляющие реалии науки. ДНК-технология и биотехнология с ясностью их методов, задач и публичной эффектностью успехов трансформировали облик генетики и современного общества.
Генная инженерия по своей сути не является чем-то качественно отличающимся от естественных процессов, чем-то чужеродным для живых объектов, как, например, получение искусственно синтезированных химических соединений, отсутствующих в природе, а, наоборот, представляет собой повторение подсмотренных в природе приемов. Получение трансгенных растений ныне превратилось в довольно рутинную технологию для решения практических задач, которыми занимаются как научные учреждения, так и коммерческие фирмы.
В настоящее время у 120 видов растений существуют трансгенные формы. Разрешено использование трансгенных сои, кукурузы, хлопка, рапса, картофеля, томатов, свеклы, тыквы, табака, папай, льна; заканчиваются испытания трансгенного риса и пшеницы. Трансгенные растения выращиваются в 14 странах мира — США, Китае, Аргентине, Канаде, Австралии, Мексике, Испании, Франции, Южной Африке, Португалии, России и Румынии. В 2005 г. под ними была занята площадь около свыше 90 млн. га. Площадь под трансгенными формами растений увеличилась за десять лет на два порядка.
С использованием трансгенных растений были решены такие проблемы, как гербицидоустойчивость, устойчивость к насекомым, к вирусам, к грибковым и бактериальным заболеваниям, регуляция сроков созревания, повышение общей продуктивности, съедобные вакцины. Из выращиваемых сегодня трансгенных растений 71% устойчивы к гербицидам, 22% — к вредителям и 7% — к гербицидам и вредителям (в основном соя, кукуруза, хлопок, рапс).
Идет поиск подходов к резкому повышению продуктивности растений. Считается, что трансгеноз у растений и животных — наиболее перспективная биотехнология для решения продовольственной и медицинской проблем на ближайшее десятилетие. Трансгенные животные — козы, овцы, свиньи, коровы — используются для секреции под промоторами «генов молока» высокоактивных биологических веществ для медицины и фармакологии. Уже прошли или проходят лицензирование и поступили или в скором времени поступят на рынок полученные через трансгенных животных антитрипсин, применяемый при легочных заболеваниях, антитромбин III для предотвращения инфарктов и инсультов, факторы свертываемости крови, белок С, обладающий защитными функциями, и ряд других.
Так как трансгенные растения устойчивы к болезням и вредителям, то не исключается повышение устойчивости самих возбудителей болезней и тех же насекомых-вредителей, то есть их коэволюция. Это вторая проблема, последствия которой необходимо предвидеть. Возможно, что, создавая устойчивость у растений, мы стимулируем процесс отбора более устойчивых возбудителей и вредителей. Естественно, что трансгеноз вызывает весьма ощутимые последствия, которые нужно тщательно изучать.
Если внимательно присмотреться, то можно заметить, что все в нашей жизни и чуть ли не все технологические чудеса основаны, в конечном счете, на достижениях фундаментальной науки, то есть на вроде бы не имеющих явных прикладных аспектов результатах, которые интересны разве что для окончательно оторвавшихся от жизни и от народа теоретиков. Но как оказалось, вчера — отвлеченный, сегодня — самый что ни на есть прикладной.
Новое достижение геномики — науки, изучающей структуры и функции геномов человека, животных и млекопитающих: удалось найти удивительно изящный и эффективный подход к изучению и пониманию жизни. Главное, что инженерный подход к сборке клетки почти ничем не отличается от сборки компьютера. Во-первых, нужно иметь схему материальной «начинки» прибора и схему его работы — этим занимается генная инженерия и ДНК-технология. Принцип «сделать, чтобы понять» обычно работает на достаточно простых устройствах, содержащих минимальное количество деталей. Одна из простейших биологических машин, выявленных генетиками — это одноклеточный микроорганизм микоплазма.
При прогнозировании последствий использования новых технологий необходимо исходить из существования двух основных предпосылок развития опасных природных явлений: исторической (эволюционной) и антропогенной. В основе первой предпосылки лежат эволюционные процессы развития Земли, приводящие к непрерывной реорганизации вещества в твердой, жидкой и газообразной оболочках Земли с выделением и поглощением энергии, изменению напряженно-деформированного состояния земной коры и взаимодействия физических полей различной природы. Происходящие процессы лежат в основе глобальной геодинамики Земли и развития эндогенных, экзогенных, гидрологических и атмосферных явлений.
Сложные системы организованы иерархически. Сама часть может быть целым, если она состоит в свою очередь из более мелких частей на лежащем ниже уровне организации мира. Часть может быть сложнее целого (по своему поведению, по спектру возможных форм), если она имеет более высокий показатель нелинейности по сравнению с целым. Человек сложнее социальной группы или общества, ибо его нелинейность выше. И вместе с тем именно человек строит и перестраивает себя в основном из прошлого. Из элементов памяти, возобновляя процессы по старым следам, встраивая крупные блоки прошлого в настоящее и погружаясь в дорогое и памятное ему прошлое, он прорывается в желаемое будущее.