Ирина Яковлева - По следам минувшего
Как же все-таки удалось их разглядеть?
Однажды шахтеры расчищали засыпанную штольню в старом, давно заброшенном руднике. Скрипели лопаты. Мелькали в пыли шахтерские лампы. Вдруг звякнул обо что-то металл, и легла тишина, и каждый услышал стук собственного сердца: из-под завала торчала рука. Тусклым золотом мерцали скрюченные пальцы, и золотым был грубый сермяжный рукав, задев который зазвенела лопата.
Шахтеры угрюмо сняли шапки. Они знали: перед ними останки горняка, погибшего под обвалом. Минерал пирит полностью заменил все, каждую нитку холщовой одежды, каждую выпуклость сыромятного ремня, каждый волос на голове… Пирит способен создавать идеально точные копии мягких тканей: четыреста миллионов лет пролежала в земле пиритовая отливка древнего червя-полихеты, но и сейчас на нем видна каждая щетинка. Находят копии-отливки даже медуз — казалось бы, совсем уж «бестелесных» существ.
Пирит — не единственный и даже не лучший минерал, который использует природа для изготовления копий. Соединения кремния, как выяснилось, могут снять точную копию даже с молекулы органического вещества. Рассмотреть такую копию, или, как говорят биологи, «реплику на молекулярном уровне», можно только в электронный микроскоп.
Эти особенности кремния и помогли палеонтологам заглянуть в скрытую жизнь криптозоя. Сделать это оказалось очень непросто. Силы природы слишком долго работали над уничтожением старых архивов. Слишком редко возникали условия, при которых могли окаменеть «невидимки». Слишком малы оказались сами «невидимки». В породе трехмиллиардной давности найдены одни из самых древних клеток длиною 0,7 и шириной 0,2 микрона. Выделить и изучить такие пылинки — дело чрезвычайно трудоемкое. Породу приходится растворять в плавиковой кислоте. Приходится применять сложную технику. Но игра стоит свеч. Ведь в «темных веках» криптозоя произошло самое главное: появились живые существа, появились клеточные формы. Царство животных отделилось от царства растений, и, наконец, возникли многоклеточные существа.
На все это понадобилось примерно 3,5 миллиарда лет.
КОРОЛИ И КАПУСТА
Растения с помощью света производят органические вещества и кислород. Животные эти вещества при помощи кислорода разрушают. Налицо два царства, две главные «специальности» живой природы — созидатели и разрушители, сопряженные в вечном биологическом круговороте.
Нет сомнения, что современные растения и животные ведут начало от одного корня, от первичных существ — протобионтов. К какому же царству следует относить самих протобионтов? После выхода в свет «Происхождения видов» Чарльза Дарвина эволюционисты со всей дотошностью занялись выяснением этого вопроса и через сто с лишним лет убедились, что ни растительного, ни животного царства в действительности не существует и в научной классификации от них лучше бы отказаться.
Конечно, речь идет не о биологических «специальностях». Никто не усомнился, что элодея на свету выделяет кислород, а лошадь ест овес и сено, разумеется, в любое время суток. Однако царства, типы и классы живой природы выделяются не по «специальности», а по признакам наследственного сходства, по родству. Морскую капусту, мухомор и фиалку объединили в царстве растений лишь потому, что были уверены в их родстве, в том, что они ближе друг к другу, чем к корове или к кораллу. Вот это и оказалось ошибкой. А разрушила представление о великих царствах научно-техническая революция, дав биологам мощные средства исследования клетки: электронные микроскопы и технику для сверхточных биохимических анализов.
Оказалось, что по устройству клетки все живые существа следует прежде всего разделить не на животные и растения, а на организмы «безъядерные» — прокариоты — и «ядерные» — эукариоты. В группу прокариот попали все бактерии и часть водорослей — сине-зеленые. В группу эукариот — все остальные растения и животные. Так через царство растений прошла первая и самая глубокая трещина. Даже не трещина, а пропасть. Клетки всех «ядерных» удивительно похожи. И не только наличием «центра управления» — ядра с его хромосомами. В каждую клетку растительных или животных эукариот вмонтированы совершенно одинаковые и очень сложные «энергетические агрегаты» — митохондрии. Именно в них совершается главный цикл, обеспечивающий (летку энергией, — цикл окисления лимонной кислоты. Короче говоря, все клетки «ядерных» организмов очень высоко организованы, могут производить большую энергию и специально приспособлены к потреблению кислорода. А прокариоты очень просты и сохраняют черты глубочайшей древности. Ядра и митохондрий у них нет, а энергетика крайне разнообразна. Для многих из них кислород — смертельный яд, зато некоторые могут «дышать» смесью углекислоты и водорода, или, при помощи той же углекислоты, окислять сероводород.
Растительная клетка
Большинство микроорганизмов разрушают органические соединения, но зеленые и пурпурные бактерии ведут фотосинтез. Однако фотосинтез у них особый — кислород при этом не образуется. И наконец, синезеленые прокариоты работают как обычные растения.
Нетрудно догадаться, что «безъядерные» организмы и есть прямые наследники и потомки протобионтов, что они начали свой жизненный путь в первобытном бескислородном мире, насыщенном углекислотой и органикой. И только миллиарды лет спустя, когда условия несколько приблизились к современным, на арену жизни вышли эукариоты.
Совсем недавно палеонтологи, используя современную технику, смогли показать, что все происходило именно так: возраст бактерий, синтезирующих метан, оказался около 3,5 миллиардов лет, возраст синезеленых — около 3 миллиардов. Древние организмы не только выглядели как синезеленые — они были ими в действительности. Из древних вмещающих пород удалось выделить пигмент дикобиллин, который использует для фотосинтеза только эта группа.
Клетки первых эукариот почти втрое моложе. Уже на фотографиях этих ископаемых хорошо видны ядра и даже ядра в процессе деления.
Поначалу казалось, что новые факты ничем не угрожают сложившимся представлениям об эволюции жизни. Все очень просто: первичные «безъядерные» гетеротрофы[1] дали начало фотосинтезирующим, опять же безъядерным организмам — растениям. Те, в свою очередь, усложнились, приобрели ядро, митохондрии и жгутики, иными словами превратились в эукариот. Затем часть первичных жгутиконосцев утратила хлорофилл и превратилась в настоящих животных. Другая же часть продолжала совершенствовать свою «растительную» квалификацию.
Однако эта разумная гипотеза споткнулась вроде бы на ровном месте: никто из ее сторонников не смог объяснить, каким образом синезеленые водоросли превратились в «ядерные» организмы. И чем больше внимания уделялось этому вопросу, тем яснее становилась его неразрешимость.
В конце концов, узел противоречий пришлось не развязывать, а разрубать при помощи гипотезы симбиоза. В упрощенном виде она выглядит так: жила в первобытном океане довольно крупная бактерия-хищник. Пищей ей служили мелкие родичи, которых она поглощала и не спеша сбраживала, поскольку кислород использовать еще не умела. И вот однажды довелось ей проглотить пищу, которая вела себя совсем удивительно, вроде неразменного сказочного рубля, — вовсе не переваривалась, а силы и бодрости прибавляла. Это были дышащие аэробные бактерии. Жертва осталась жить внутри хищника. Но чудеса на этом не кончились. Вот что пишет один из авторов гипотезы, американец Маргулис: «К поверхности хозяина прикрепилась вторая группа симбионтов, жгутикоподобные бактерии, сходные с современными спирохетами, которые значительно увеличили подвижность хозяина». Увеличилась подвижность, увеличилась и возможность новых встреч. На этот раз гибридный организм проглотил подходящую синезеленую водоросль и до скончания времен прекратил охоту: теперь вечная пища всегда находилась внутри его тела. Так появилось растение.
Следовательно, животная клетка — эукариот, это химерический союз трех бактерий, а растительная — животной клетки и водоросли.
Вся эта история похожа на сказку не только в нашем, но и в строго научном изложении. Но обоснована она очень крепко, и потому ее приняло большинство авторитетных ученых. Во-первых, одноклеточные водоросли и сейчас легко вступают в союз с животными-эукариотами. Например, известная всем инфузория-туфелька может держать в плену столь же известную водоросль — хлореллу. Туфельки не переваривают свою, «домашнюю» хлореллу, которая всегда образует строго определенное количество клеток внутри хозяина. Однако любая «дикая» хлорелла, попавшая внутрь хищника, уже насыщенного своими водорослями, уничтожается мгновенно. Причем водоросли-сожители часто теряют способность к самостоятельному существованию.