KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Роберт Хейзен - История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет

Роберт Хейзен - История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Роберт Хейзен, "История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет" бесплатно, без регистрации.
Перейти на страницу:

В противоположность им породы моложе 2,5 млрд лет содержат много однозначных признаков наличия кислорода. В период между 2,5 и 1,8 млрд лет появилось поразительно много массивных залежей оксидов железа, именуемых полосчатыми железистыми формациями. Эти характерные плотные скопления чередующихся слоев черного и красного цвета содержат около 90 % мировых запасов железной руды. В это же время внезапно появились окислы марганца, также в виде многослойных залежей, составляющих большинство основных мировых ресурсов марганцевых руд. В этот же период среди горных пород появились сотни новых минералов – окисленные руды меди, никеля, урана и других пород, – и все это впервые после Великого кислородного события. Однако несмотря на все эти многочисленные минералогические данные, многие специалисты сомневаются, что Великое кислородное событие было таким уж великим на самом деле. Может быть, в атмосфере просто медленно и неуклонно накапливался кислород. Может, свидетельства пятнистых, выветренных камней просто вводят нас в заблуждение.

Явная улика против Великого кислородного события пришла из неожиданного источника – недавно полученные данные по изотопам такого простейшего элемента, как сера. Девяностые годы прошлого века ознаменовались ростом разрешающей способности и чувствительности масс-спектрометров, рабочих лошадок и главных инструментов анализа изотопов. Новое поколение масс-спектрометров позволило ученым анализировать все более и более мелкие образцы, даже микроскопические зерна минералов или отдельные живые клетки с все более высокой точностью. Одним из самых увлекательных объектов для исследования оказалось такое простое вещество, как сера, поскольку в природе встречается четыре устойчивых изотопа серы: сера-32, сера-33, сера-34 и сера-36. В ядре всех этих изотопов содержится заданное число протонов – 16, а количество нейтронов колеблется от 16 до 20.

Распределение изотопов обычно определяется массой и вполне предсказуемо. Все атомы колеблются, но чем легче изотоп, тем быстрее колебания. Поэтому во всех химических реакциях легкие изотопы вовлекаются активнее, чем тяжелые. Этот селективный процесс носит название «фракционирование изотопов» и происходит всякий раз, когда скопление атомов серы вступает в химическую реакцию, идет ли речь о твердой породе или о живой клетке. Изотоп серы-32 обычно фракционирует больше, чем изотопы массой 34 или 36. Более того, фракционирование обычно соотносимо с массой изотопов: фракционирование серы-36 в серу-32 всегда вдвое превышает фракционирование серы-34 в серу-32. Это физическое явление соответствует непосредственно законам Ньютона: сила, приложенная к массе, придает ей ускорение. Объекты меньшей массы получают большее ускорение, поэтому под воздействием определенной силы сера-32 колеблется быстрее, чем сера-34, которая, в свою очередь, колеблется быстрее, чем сера-36.

Десять лет назад геохимик Джеймс Фаркуар из Университета Калифорнии, работая на живописном побережье Сан-Диего, выявил основательные и неожиданные изменения в распределении изотопов серы в породах, возраст которых превышал 2,4 млрд лет. Более молодые породы и минералы почти всегда демонстрируют ожидаемую зависимость от массы; распределение изотопов серы почти полностью зависит от соотношения их масс. Но Фаркуар с коллегами обнаружил кардинально иное поведение изотопов серы в породах старше 2,4 млрд лет – в некоторых образцах отклонение составляло несколько десятых процента (для этого явления очень большая цифра). Что могло вызвать такое нарушение незыблемых законов Ньютона?

Сообразительные теоретики, поддержанные экспериментальными данными, тут же выдвинули решение, основанное на тонкостях квантовой механики. Под воздействием ультрафиолетового излучения поведение изотопов может отклоняться от идеальной механики Ньютона. Оказывается, изотопы с нечетным массовым числом, например сера-33, могут выборочно подвергаться ультрафиолетовому излучению. Если молекула сернистого ангидрида или сероводорода случайно содержит изотоп серы-33 и сталкивается с ультрафиолетовым лучом (скорее всего, в верхних слоях атмосферы), она может реагировать очень активно. Изотоп серы-33 в таком случае проявляет «независимое от массы фракционирование», что изменяет изотопное отношение.

Но чем вызвано такое внезапное изменение на Земле 2,4 млрд лет назад? Ответ прост: ультрафиолетовые лучи способны поглощать озон, молекулу, состоящую из трех атомов кислорода, которой СМИ уделяют столько внимания в последние десятилетия. В верхних слоях современной атмосферы озон создает естественный барьер на пути смертельно опасного ультрафиолетового излучения Солнца. Проведенные за последние два десятилетия замеры показывают, что этот верхний слой озона существенно истончился, по-видимому, из-за разрушительных реакций, вызванных такими продуктами промышленного производства, как хлорфторуглероды. (В качестве показательного примера можно привести фреон, некогда применявшийся в кондиционерах.) Озоновые дыры пропускают большое количество канцерогенных ультрафиолетовых лучей. Запрет на производство хлорфторуглеродов как будто способствует быстрому восстановлению озонового слоя.

До появления в атмосфере газообразного кислорода и последующего образования озонового слоя, блокирующего солнечную радиацию, в верхних слоях атмосферы сернистые соединения подвергались безостановочному воздействию ультрафиолетового излучения. В таких суровых условиях соединения, содержащие изотопы серы-33, испытывали независимое от массы фракционирование. После Великого кислородного события кислород в верхних слоях атмосферы вступил в реакцию с некоторыми из таких соединений и почти вытеснил эти нечетные изотопы.

Все лаборатории мира проверяли и перепроверяли находки Фаркуара, и большинство специалистов согласились с гипотезой Великого кислородного события. Если только ученые не обнаружат вместо озона какой-нибудь другой способ защиты от ультрафиолетового излучения, можно считать, что данные об изотопах серы служат точкой отсчета для начала кислородной революции примерно 2,4 млрд лет назад.

Создание кислорода

Откуда взялся кислород? В современной биологии любая вводная лекция начинается с фотосинтеза – удивительной способности растений обеспечивать рост за счет поглощения воды, углекислого газа и солнечного света, производя при этом кислород в качестве побочного продукта. Мы теперь считаем естественным, что растения играют центральную роль в превращении нашей планеты в обитаемый мир, но когда-то открытие фотосинтеза стало одним из крупнейших достижений науки. И подобно многим важнейшим открытиям, это происходило по частям.

Сначала обнаружилась роль воды. Механизм роста растений оставался загадкой для ученых XVII в., но существовало предположение, что для развития растительных тканей необходимы почвы, богатые минералами, а значит, именно за счет усвоения минеральных веществ и осуществляется рост растений. Фламандский врач Ян Баптист ван Гельмонт (1579–1644) проверил это предположение экспериментальным путем в 40-х гг. XVII в. Вот что он пишет:

«Я взял глиняный горшок, положил в него 90 кг просушенной в топке земли и полил все это дождевой водой, посадив туда ивовую ветвь весом 2,3 кг; через 5 лет из ветви выросло дерево весом 77 кг. Я поливал этот горшок дождевой или дистиллированной водой (всегда, когда это требовалось)… В конце я снова просушил землю, заполнявшую горшок, и она по-прежнему весила 90 кг, не доставало лишь 57 г. Таким образом, 77 кг древесины, коры и корней выросли только за счет воды».

Открытие ван Гельмонта стало большим шагом вперед, хотя, как мы знаем теперь, вода составляла только часть условий роста.

Столетие спустя английский священник и натуралист Стивен Хейлз впервые предположил, что растения используют для роста не только воду, но и какие-то компоненты воздуха, например, углекислого газа из атмосферы. Теперь-то мы знаем, что вода в почве и углекислый газ в воздухе составляют важнейшие ингредиенты для роста организмов, живущих за счет фотосинтеза. (По иронии судьбы, именно ван Гельмонт открыл углекислый газ, но не осознал его роли в росте растений.)

При всем том роль солнечного света оставалась загадкой, и потребовалось еще 300 лет, чтобы разгадать ее. Прогресс в ядерной физике открыл новые возможности, когда последнее поколение ускорителей (циклотронов) предоставило постоянный источник высокорадиоактивных изотопов углерода-11 – чувствительного зонда биологических реакций. В конце 30-х гг. XX в. Сэмюель Рубен и Мартин Камен в Беркли использовали для отслеживания взаимодействия растения с углекислым газом «метку» в виде углерода-11. Они использовали этот индикатор радиоактивности, чтобы проследить путь углекислого газа в тканях растения, хотя условия эксперимента затруднял короткий период полураспада углерода-11 – всего лишь 21 минута.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*