KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Александр Нейфах - Гены и развитие организма

Александр Нейфах - Гены и развитие организма

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Нейфах, "Гены и развитие организма" бесплатно, без регистрации.
Перейти на страницу:

Клональная теория Барнетта полагает (и это действительно так), что каждый лимфоцит производит только один вид антител и что в организме существует столько видов (клонов) лимфоцитов, сколько видов антител этот организм может производить. По современным подсчетам, число это имеет порядок от одного до десяти миллионов.

Согласно клональной теории, антиген, попавший в организм, случайно встречается с теми, пока немногими, лимфоцитами, которые способны к образованию антител против этого антигена. Некоторые молекулы антител, как бы «образцы продукции», находятся на поверхности таких лимфоцитов, где и происходит их первая встреча с антигеном. Контакт с антигеном, согласно теории, стимулирует данный лимфоцит к активному размножению и синтезу антител, в результате чего образуется большая популяция лимфоцитов одного клона, продуцирующих только один вид антител.

При попадании в организм другого антигена стимулируется размножение другого клона лимфоцитов и соответственно синтез другого вида антител. Так как исходно имеется не менее миллиона видов антител, то каждый новый антиген находит один или более видов антител, которые ему комплементарны и с ним связываются. При этом соответственно активируется размножение новых клонов лимфоцитов.

В принципе антитело может быть комплементарно не к одному, а к ряду антигенов со сходными детерминантами, но практически найти второй антиген (точнее, детерминант) к тому же антителу обычно очень трудно.

Таким образом, в организме — в крови, в лимфоузлах и кроветворных органах — должно содержаться около миллиона различных клонов лимфоцитов, каждый из которых представлен, как правило, очень небольшим количеством, может быть всего сотнями, клеток. Ho организм почти всегда иммунизирован против ряда антигенов, которые посредством инфекции успевают в течение жизни в него попасть. Число таких антигенов, вероятно, не очень велико, может быть десятки или сотни. Te клоны лимфоцитов, которые вырабатывают антитела против этих антигенов, уже успевают размножиться, и число лимфоцитов в каждом таком «работающем» клоне должно быть в миллионы раз выше. Лимфоциты этих относительно немногих клонов составляют значительную долю всей популяции лимфоцитов в организме (у мыши их миллиард, у человека еще в тысячу раз больше).

При попадании в организм нового антигена иммунизация происходит не сразу: на отыскание немногих лимфоцитов «своего» клона, на их размножение и выбрасывание в кровь достаточных количеств антител обычно уходит около двух недель. Этот срок является критическим при многих опасных инфекционных заболеваниях. Если микробы, попавшие в организм, быстро размножаются, а токсины, которые они вырабатывают, очень ядовиты, то организм погибает, не успев создать иммунной защиты. Если же ему удалось прожить с инфекцией хотя бы одну-две недели, то далее образование антител в В-лимфоцитах блокирует токсины, а Т-лимфоциты уничтожают и сами микроорганизмы.

Существует еще одна важная проблема, без решения которой не может быть теории иммунитета, Теория должна ответить на вопросы: почему не вырабатываются антитела к своим собственным белкам? почему лимфоциты не «считают» их антигенами? Клональная теория Барнетта полагает, что все лимфоциты, которые могли бы синтезировать антитела против собственных антигенов, встречаются с ними в раннем постэмбриональном или даже эмбриональном развитии и эта ранняя встреча подавляет размножение подобных лимфоцитов или даже убивает их.

Ho проблему отсутствия антител к своим белкам еще нельзя считать до конца решенной. Она имеет важное значение для понимания того, как организм защищается против появления новых белков, кодируемых своими же генами, например при злокачественных перерождениях клеток.

2. Клеточные механизмы иммунитета

Иммунитет осуществляется лимфоцитами, которые, как и все клетки крови, образуются из одного источника — стволовых клеток крови в костном мозге и селезенке. Начальным этапом образования лимфоцитов являются полустволовые клетки — предшественники лимфоидных клеток, которые затем дифференцируются в лимфоциты двух типов — T- и В-клетки. Дифференцировка Т-клеток происходит в зобной железе — тимусе, куда они мигрируют из костного мозга. В тимусе образуется несколько разновидностей Т-клеток, которые выходят в кровь и становятся киллерами (убийцами), хелперами (помощниками) и супрессорами (подавителями). Функция Т-клеток-киллеров состоит в том, чтобы опознать чужеродную клетку и убить ее.

Т-клетки образуют клоны, различающиеся по их способности опознавать чужеродные клетки. Это происходит потому, что Т-клетки каждого клона по своей поверхности несут молекулы какого-то одного типа антител. Когда в организм попадают чужие клетки, антигены, находящиеся на их поверхности, взаимодействуют с антителами поверхности различных Т-клеток. Среди многих разных Т-клеток находятся и те, чьи антитела способны связываться с антигеном чужой клетки. Когда такая встреча происходит, Т-клетки этого клона быстро размножаются и убивают те чужеродные клетки, которые индуцировали их размножение. Механизм «убийства» до конца неизвестен, но Т-киллеры нарушают у чужеродной клетки проницаемость ее мембраны, что и приводит к ее гибели.

Роль В-лимфоцитов иная. Они не только синтезируют иммуноглобулины, но и выделяют их в кровь. Если Т-клетки в основном участвуют в защите организма от чужих клеток, то В-клетки защищают организм от чужих молекул.

Таким образом, иммунную защиту осуществляют специфические лимфоциты, которые надо различать по нескольким параметрам. Главный из них состоит в «выборе» одного типа иммуноглобулинов. Этот выбор происходит задолго до встречи с антигеном, где-то в начале дифференцировки лимфоцитов, и осуществляется на генном уровне (мы рассмотрим его в следующих разделах). Затем происходит разделение на два пути дифференцировки — на T- и В-лимфоциты с их различным назначением. И наконец, Т-клетки подразделяются на типы клеток с различной функцией (киллеры, хелперы и т. д.). Пути дифференцировки и механизмы действия лимфоцитов еще не вполне понятны.

В последние годы получило большое развитие искусственное создание опухолевых клеток, производящих антитела одной антигенной специфичности, или, иначе, моноклональные антитела. Такие клетки называют гибридомами, так как их получают путем соматической гибридизации опухолевых (миэломных) клеток с В-лимфоцитами, синтезирующими антитела. Это обеспечивает неограниченное размножение таких клеток в культуре. Схематично метод состоит в том, чтобы гибридизировать миэломные клетки с лимфоцитами от мыши, иммунизированной определенным антигеном. Далее гибридные клетки расселяют с тем, чтобы вырастить из каждой отдельный клон. Антитела, производимые каждым клоном, испытывают на их связывание с интересующим нас антигеном. Так как мышь была иммунизирована, то определенная часть гибридных клонов производит антитела к выбранному антигену. Каждый такой клон производит антитела только одного вида, и получать их можно в любом количестве, так как, приобретя опухолевые свойства, гибридные клетки легко размножаются в культуре. Моноклональные антитела сейчас начинают широко использовать не только в научных целях. Изучается возможность применять их для лечения таких, например, заболеваний, как рак. Метод может стать основой для промышленного получения моноклональных антител против различных заболеваний.

3. Молекулы иммуноглобулинов

Молекула антитела — иммуноглобулина (ИГ) состоит из четырех полипептидных цепей — двух одинаковых больших (тяжелых) и двух одинаковых меньших (легких), связанных друг с другом S — S-мостиками. Специфичность взаимодействия молекулы ИГ с антигеном создается уникальностью самих цепей — тяжелой нелегкой, а также их уникальным сочетанием. Иначе говоря, сложная молекула ИГ узнает «свой» антиген благодаря деталям строения, которыми данный вид ИГ отличается от ИГ других видов (хотя каждая молекула ИГ содержит две тяжелые и две легкие цепи с похожим, но не тождественным строением). Упрощая дело, можно сказать, что миллион вариантов ИГ получается как произведение тысячи вариантов легких цепей на тысячу вариантов тяжелых цепей.

Структура ИГ сейчас изучена во всех деталях. Задача была очень трудной из-за того, что обычно в крови одновременно находится множество различных ИГ (каждая в малом количестве) и получить чистый препарат казалось невозможным. «Помогло» несчастье. У некоторых людей, больных особой формой лейкоза — миэломой, патологически размножается один клон лимфоцитов, производящий в очень большом количестве какой-либо один вид антител. Исследование однородных препаратов ИГ, полученных от таких больных, позволило детально изучить, что общего и что разного у разных видов молекул ИГ.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*