Владимир Скулачев - Рассказы о биоэнергетике
Известно, что время, необходимое, чтобы уравнялись концентрации ионов Н+ между бактерией и средой, измеряется несколькими минутами. Значит, вызванное кислотой движение должно прекратиться спустя минуты.
И действительно, через три минуты после добавки кислоты поле под микроскопом являло собой печальную картину, которую мы наблюдали в начале опыта: бактерии были неподвижны.
Вот вам и разрушение яда кислотой! Что же это он сначала разрушился, а потом, когда кислота проникла в клетку, опять образовался?
Конечно, нет.
А может быть, вообще клетка становится неподвижной, когда цитоплазма подкислилась?
Все может быть. Но заметьте, каждый следующий факт, предсказанный нашей гипотезой, требует от оппонента какого-нибудь нового предположения. Наша точка зрения ведет к новым фактам, противоположная — к новым предположениям.
И все же проверим, как влияет сама по себе кислотность среды на движение бактерий. Исключим из среды яд, мешавший производству протонного потенциала за счет света, и посмотрим, не обездвижутся ли бактерии при подкислении среды. Оказывается, этого не происходит. В подкисленной среде бактерии весело плавают до тех пор, пока не выключишь свет.
Итак, к чему же мы пришли? Протонный потенциал движет бактерией. Но как? Есть только один путь: ионы Н+ входят в бактерию и «походя» вращают М-диск, а с ним и всю флагеллу. Почему ионы Н+ идут внутрь клетки? Да просто потому, что их снаружи больше, чем внутри. Ведь не зря же мы добавили НС1, которая в воде полностью диссоциирует на Н+ и Сl-.
Если все это так, можно включить механизм движения и другим способом: создать, например, внутри клетки избыток отрицательных зарядов. Тогда даже при равенстве концентраций ионов Н+ внутри и снаружи клетки эти ионы будут поступать внутрь за счет электрических сил, перемещаясь от плюса к минусу.
Сказано - сделано! На стекле две капли. В одной неподвижные, отравленные ядовитой смесью бактерии, в другой еще один яд, антибиотик валиномицин. Этот агент резко повышает проницаемость мембран для ионов калия (К+).
Раствор валиномицина, как и среда с бактериями, не содержит ионов К+. В то же время внутри бактерий много этих ионов. Если теперь слить две капли, то валиномицин атакует бактерии, повысит их калиевую проницаемость и разрешит ионам К+ выйти из бактерии, где их избыток по сравнению с окружающим раствором.
Выходя, ионы К+ зарядят внутренность клетки отрицательно, этот минус притянет К+, и, двигаясь внутрь, Н+ запустит протонный мотор. Бактерии поплывут. Таково предсказание гипотезы.
А что получилось в опыте на самом деле? Бактерии задвигались и вновь через положенное время, когда уравнялись концентрации К+ внутри и снаружи клетки, остановились.
Предвидя новое возражение оппонента (а вдруг валиномицин работал у нас не переносчиком калия, а кем-то еще), мы поставили контрольный эксперимент, где бактерии находились в среде с высоким содержанием калия. Теперь калия было много и внутри и снаружи клетки. В таких условиях валиномицин не включал механизма подвижности. Эффект валиномицина (а также и кислоты) можно было снять и другим способом: добавив в среду разобщитель-протонофор и тем самым сведя к нулю протонный потенциал.
Наши данные по движению пурпурных бактерий были опубликованы у нас в «Биохимии» и за рубежом — в «Нэйчер», Вскоре появились сообщения из США и Японии, где аналогичные результаты получились в опытах на стрептококке и Bacillus subtilis. Параллельно мы проделали такую же работу с классическим объектом микробиологов — кишечной палочкой.
А совсем недавно Т, и А. Глаголевыми и М. Гусевым и К. Никитиной было доказано, что нитчатые сине-зеленые водоросли также используют протонный потенциал для своего скользящего движения по поверхности твердого субстрата.
Это последнее наблюдение свидетельствует, что протонный мотор, однажды изобретенный природой, применяется не только у бактерий, имеющих жгутики. У сине-зеленых водорослей жгутиков нет. Их роль выполняют, по-видимому, фибриллы, лежащие между внешней и цитоплазматической мембранами этих организмов, Сине-зеленые водоросли относятся к царству бактерий (у них есть даже другое название — цианобактерии). А могут ли организмы, принадлежащие к высшим царствам живой природы, двигаться за счет протонного потенциала? Чтобы ответить на этот вопрос, мы занялись движением хлоропластов.
Вращение хлоропластов
В тридцатые годы прошлого века французская академия получила от некоего мсье Донне удивительное сообщение. Корреспондент писал, что им обнаружено вращательное движение каких-то частиц в капле протоплазмы, выдавленной из харовой водоросли. Вращение, направленное в одну и ту же сторону, можно было наблюдать под микроскопом в течение многих минут, причем все это время его скорость оставалась постоянной (примерно один оборот за одну-две секунды).
Академия, осаждаемая изобретателями вечных двигателей, не решилась опубликовать заметку Донне. Создали комиссию для проверки поразительного эффекта. Наблюдение полностью подтвердилось. Доклад комиссии опубликовали в «Академических трудах» в 1838 году, после чего то ли Донне проявил настойчивость, то ли сами академики спохватились, но так или иначе заметка этого автора наконец увидела свет в одном из следующих выпусков тех же «Трудов».
Вращение хлоропластов
В те далекие времена биология что ни год приносила поистине великие открытия. Поэтому неудивительно, что эффект Донне, абсолютно непонятный по своей природе, прочно забыли, с тем чтобы вновь открыть по крайней мере дважды в течение следующих 140 лет.
Новые исследователи загадочного эффекта выяснили, что частицы, вращающиеся в каплях протоплазмы харовой водоросли, не что иное, как хлоропласты, содержащие хлорофилл органеллы высших растений (о хлоропластах шла речь выше, в главе, посвященной преобразованию энергии света в растительных клетках).
Но почему, за счет каких сил вращаются хлоропласты? Немногочисленные специалисты-цитологи, занимавшиеся этой экзотической проблемой лет двадцать-тридцать назад, считали, что вращение хлоропластов имеет ту же природу, что и так называемый циклоз — круговое движение протоплазмы в клетках харовых водорослей. Энергия для циклоза доставляется АТФ, который расщепляется особыми ворсинками, обращенными внутрь гигантской клетки харовой водоросли. Биение этих ворсинок движет протоплазму и, как думали цитологи, вращает хлоропласты.
Меня давно занимала проблема происхождения хлоропластов и митохондрий. Существует гипотеза, что и те и другие органеллы произошли из бактерий, когда-то захваченных более крупной клеткой гриба или протиста, например, какой-нибудь амебы. Действительно, у хлоропласта много общих черт с цианобактерией, а у митохондрии с некоторыми видами дышащих бактерий.
Так, может быть, механизм вращения хлоропластов устроен как у бактерий: по типу протонного мотора?
Е. Моценок, приехав к нам на стажировку из лаборатории Д. Стома, что в Иркутске, захватила с собой байкальские водоросли рода нителла. Как выяснилось, такой объект вполне пригоден для изучения эффекта Донне. Когда я впервые увидел своими глазами это явление, меня прежде всего поразило сходство вращающегося хлоропласта и «пойманной за хвост» бактерии, о которой шла речь в предыдущей главе. Но, может быть, мы столкнулись здесь со случайным, внешним подобием?
Моценок провела подробнейший анализ вращения хлоропластов с точки зрения энергетики этого процесса. Она наблюдала за хлоропластами в специальный микроскоп, используя инфракрасный свет для освещения объекта. Такой свет не поглощается хлорофиллом и не может быть использован энергетической системой хлоропластов.
В раствор был добавлен яд, отравляющий протонную АТФ-синтетазу, чтобы блокировать взаимопревращение энергии между протонным потенциалом и АТФ. В таких условиях вращения не обнаруживалось. Включение белой подсветки «заводило» вращение. Движение хлоропласта исчезало вновь спустя примерно минуту после выключения подсветки.
Вращение прекращалось при введении веществ, тормозящих генерацию протонного потенциала на мембране хлоропласта или снижающих уже образованный потенциал. Так действовали диурон, прерывающий перенос электронов при фотосинтезе, протонофоры, а также ионы аммония, уменьшающие трансмембранную разность концентраций водородных ионов — главную составляющую протонного потенциала хлоропластов.
Зато арсенат, вызывающий истощение запаса АТФ, не влиял на вращение хлоропластов. Оно не тормозилось также цитохалазином, ингибитором всех известных внутриклеточных движений, поддерживаемых энергией АТФ.
Все эти факты свидетельствуют, что хлоропласты используют для своего вращения протонный потенциал. Значит, в них есть протонные моторы?