Е. Бессолицына - Структурная биохимия
Рисунок 12. Окисление до альдуроновых кислот
Жесткое окисление до альдаровых кислот, реакция происходит в жестких условиях, например при больших концентрациях сильных кислот, например, азотной. В результате происходит окисление обеих групп – альдегидной и последней спиртовой, в результате образуется дикарбоновая кислота, или альдаровая (Рисунок 13).
Рисунок 13. Окисление до альдаровых кислот
Восстановление моносахаридов. Восстановлению могут подвергаться как альдегидная, так и спиртовые группы
Восстановление альдегидной группы. D-Глюкоза и L-сорбоза восстанавливаются газообразным водородом в присутствии подходящего металлического катализатора, образуя сорбит (Рисунок 14).
Рисунок 14. Восстановление альдегидной группы
Восстановление спиртовой группы. В клетке происходит переход рибозы в дезоксирибозу (Рисунок 15). Эта реакция происходит в природе, но при несколько иных условиях. Это один из основных способов синтеза дезоксисахаров.
Рисунок 15. Восстановление спиртовой групы
Образование аминосахаров. В природе также происходит синтез аминосахаров, но механизм и атакуемые группы отличаются, в искуственной системе в реакцию вступает полуацетальная группировка как наиболее реакционно способная (Рисунок 16).
Рисунок 16. Образование аминосахаров
Укорочение цепи. Этот процесс связан с окислением в средних условиях. Карбоксильная группа в последнем положении нестабильна и легко отщепляется от молекулы, в результате углевод становится на один атом короче (Рисунок 17).
Рисунок 17. Укорочение цепи
Удлинение цепи. Это результат реакции с цианидом, затем происходит реакция с водой, в результате образуется кислота. Восстановление карбоксильной группы приводит к образованию моносахарида, но на один атом углерода длиннее (Рисунок 18).
Рисунок 18. Удлинение цепи
Гидролиз поли- и олигосахаридов. Реакция гидролиза это реакция расщепления полимера с участием молекулы воды. В случае гидролиза поли- и олигосахаридов атаке подвергается гликозидная связь. В результате реакции отщепляются мономерные остатки (моносахариды). Реакции гидролиза поли- и олигосахаридов с последующим анализом продуктов гидролиза используются для качественного и количественного определения состава полисахаридов.
Определение моносахаридов
Некоторые качественные реакции, которые используются для идентификации моносахаридов.
Альдозы, кетозы
Реактив: α-нафтол (реакция Молиша), триптофан аминогуанин.
Более чувствительна для кетоз.
Кетогексозы
Реактив: резорцин (реакция Селиванова).
Кетогексозы, Кетопентозы, метилпентозы, диоксиацетон
Реактив: цистеин/карбазол.
Все углеводы, включая уроновые кислоты и дезоксипентозы
Реактив: карбазол.
Характерное окрашивание со всеми углеводами.
Многие углеводы, включая полисахариды, чаще используется для гексоз.
Реактив: цистеин/H2SO4, антрон.
Неодинаковое окрашивание с различными углеводами.
Пентозы, гептулозы, уроновые кислоты
Реактив: орцин.
Окрашивание, обусловленное присутствием других углеводов, может быть ликвидировано независимыми методами, уроновые кислоты декарбоксилируются до пентоз и вступают в реакцию.
Уроновые кислоты
Реактив: нафтилрезорцин.
гексозамины
Реактив: Ацетилацетон-n-диметил-аминобензальдегид.
гексозамины
Реактив: нитрит/индол.
Аминосахара не дают окрашивания без предварительного дезаминирования нитритом.
Моно и дидезоксипентозы
Реактив: дифениламин.
дезоксипентозы
Реактив: триптофан/HClO4, индол/HCl, лейкофуксин (реакция Фольгена).
Сиаловые кислоты
Реактив: тиобарбитуровая кислота.
Функции моносахаридов
Функции моносахаридов очень разнообразны и зависят от того сколько атомов углерода содержит моносахарид.
Триозы – промежуточные продукты обмена углеводов и липидов.
Тетрозы – промежуточные продукты обмена углеводов могут входить в состав полисахаридов.
Пентозы – промежуточные продукты обмена углеводов могут входить в состав полисахаридов, и нуклеотидов.
Гексозы – глюкоза и фруктоза основные сахара энергетического обмена углеводов, входят в состав полисахаридов.
Гептозы – промежуточные продукты обмена углеводов.
Физиологически важные моносахариды
D-рибоза
В какие молекулы или вещества входит: нуклеотиды, коферменты, РНК.
Биологическое значение: компонент нуклеиновых кислот коферментов (NAD, NADP, FAD), нуклеотидов, промежуточное соединение пентозофосфатного пути.
D-рибулоза
В какие молекулы или вещества входит: образуется в ходе метаболизма.
Биологическое значение: промежуточное соединение пентозофосфатного пути.
D-Арабиноза
В какие молекулы или вещества входит: гуммиарабик, сливовая и вишневая мякоть.
Биологическое значение: компонент гликопротеинов.
D-Ксилоза
В какие молекулы или вещества входит: древесная смола, протеогликаны, гликозаминогликаны.
Биологическое значение: компонент гликопротеинов.
D-Ликсоза
В какие молекулы или вещества входит: ликсофлавин.
Биологическое значение: компонент ликсофлавина, выделяемого сердечной мышцей.
L-Ксилулоза
В какие молекулы или вещества входит: промежуточный продукт метаболизма уроновых кислот.
Биологическое значение: промежуточный продукт метаболизма уроновых кислот.
D-глюкоза
В какие молекулы или вещества входит: фруктовые соки, крахмал, сахароза, лактоза, мальтоза
Биологическое значение: сахар организма, участвует в энергетическом обмене, является предшественником других соединений.
D-фруктоза
В какие молекулы или вещества входит: мед, сахароза, лактоза, инулин.
Биологическое значение: превращается в глюкозу, и может использоваться в тех же метаболических путях.
D-галактоза
В какие молекулы или вещества входит: лактоза, гликопротеины, гликолипиды.
Биологическое значение: превращается в глюкозу, и может использоваться в тех же метаболических путях.
Производные моносахаридов
Производные моносахаридов: эфиры моносахаридов, альдуроновые кислоты, аминосахара, дезоксисахара, гликозиды.
Все производные моносахаридов входят в состав полисахаридов. По мимо этой основной функции производные моносахаридов могут выполнять свои специфические функции.
Альдуроновые кислоты участвуют в образовании витамина С и в процессах детоксикации.
Дезоксисахара входят в состав нуклеотидов (мономеры ДНК).
Аминосахара входят в состав антибиотиков.
Гликозиды
Рисунок 19. Структура некоторых гликозидов. А-стрептомицин, Б-уабаин
Гликозиды – это соединения, образующиеся путем конденсации моносахарида (или моносахаридного остатка в составе более сложного сахара) с гидроксильной группой другого соединения, которым может быть другой моносахарид или вещество неуглеводной природы (тогда его называют агликоном). Гликозидная связь образуется в результате реакции полуацетальной (полукетальной) группы моносахарида и спиртовой группой другого соединения, такая связь называется О-гликозидная. Также полуацетальная (полукетальная) гидроксильная группа может вступать в реакцию с аминогруппой другого соединения тогда образуется N-гликозидная связь. Если полуацетальная группа принадлежит глюкозе, образующееся соединение называют глюкозидом, если галактозе – галактозидом и т. д. Гликозиды найдены в составе многих лекарств и пряностей, они являются также компонентами животных тканей. Агликонами могут быть метанол, глицерол, какой-либо стерол или фенол. Гликозиды, имеющие важное медицинское значение, например, влияющие на работу сердца (сердечные гликозиды), содержат в качестве агликонового компонента стероиды; так, из наперстянки и строфанта выделен гликозид уабаин – ингибитор Na/K-ATP-aзы клеточных мембран. К числу гликозидов относится ряд антибиотиков, в частности стрептомицин (Рисунок 19). N-гликозидами являются нуклеотиды и нуклеозиды. Но простейшими гликозидами являются дисахариды. В случае дисахаридов агликоном является молекула другого моносахарида.