KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Инна Вартанян - Коснуться невидимого, услышать неслышимое

Инна Вартанян - Коснуться невидимого, услышать неслышимое

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Инна Вартанян, "Коснуться невидимого, услышать неслышимое" бесплатно, без регистрации.
Перейти на страницу:

В связи с вопросом о функциональном и деструктивном действии на рецепторы импульсов фокусированного ультразвука рассмотрим показатели электрической активности слуховых центров среднего мозга — суммарный электрический ответ на звук и ультразвук при изменении интенсивности этих раздражителей.

Как уже отмечалось, ответы на звук и фокусированный ультразвук, регистрируемые от среднемозгового центра, идентичны или очень схожи только в близком к порогу диапазоне интенсивностей — порядка 15 дБ над порогом реакции. Затем наблюдаются отличия между ответом на звук и ультразвук, выраженность которых возрастает по мере увеличения интенсивности, приобретая наиболее яркое выражение после достижения величин 30—40 дБ над порогом реакции. В дальнейшем различия сохраняются, величина ответа на ультразвук стабилизируется, а при интенсивностях, превышающих 50—60 дБ над порогом реакции, на импульсы фокусированного ультразвука величина ответа начинает уменьшаться, в некоторых случаях весьма значительно. Это дает основания рассматривать диапазон интенсивностей, в котором происходит уменьшение ответа, как диапазон функционально угнетающих интенсивностей. Почему функционально, а не структурно? Ведь этот диапазон соответствует тому, который при оценке содержания рибонуклеиновых кислот в рецепторных клетках является уже структурно идентифицированным как вызывающий деструктивные изменения.

О наличии в электрофизиологических опытах лишь функциональных эффектов, хотя и явно угнетающих, свидетельствует тот факт, что возвращение к малым интенсивностям ультразвука дает возможность зарегистрировать электрические реакции, идентичные тем, что и в начале раздражения, т. е. угнетение не оставляет необратимых следов. Вероятно, это обусловлено тем, что электрические ответы мы регистрируем, применяя одиночные импульсы фокусированного ультразвука, а накопление их составляет не более 10—12 при одной и той же интенсивности. Другими словами, электрофизиологическое проявление угнетающего действия фокусированного ультразвука предшествует структурным изменениям, для проявления которых необходимо значительно большее время воздействия. Достаточно вспомнить, что минимальное время, при котором в условиях действия на лабиринт серий импульсов с частотой 25 в 1 с регистрировались структурные изменения в рецепторных клетках, составляло не менее получаса. А это значит, что электрофизиологическая оценка функционального состояния рецепторов является весьма чувствительным показателем.

Результаты исследований позволили выявить диапазоны интенсивностей импульсного фокусированного ультразвука, вызывающие возбуждение рецепторов, активацию тонких немиэлизированных волокон и угнетение активности рецепторных и проводниковых структур слуховой системы. Величины интенсивности, осредненные по площади фокальной области и измеренные радиометрическим способом при частоте излучения 2.34 мГц, составляют: менее 1 Вт/см2 для возбуждения рецепторов слухового лабиринта животных и человека, 80—120 Вт/см2 для возбуждения нервных окончаний слухового нерва в условиях повреждения гидродинамической системы лабиринта или разрушения рецепторных клеток, около 400 Вт/см2 для обратимого угнетения активности рецепторных клеток и более 600 Вт/см2 для начальных деструктивных изменений в рецепторах.

Получив эти данные, мы поставили вопрос о том, можно ли в этих диапазонах вызвать усиление или угнетение активности центральных, а не рецепторных или проводниковых структур нервной системы. Была сделана попытка оценить влияние фокусированного ультразвука на сенсорные и двигательные образования мозга. Если иметь в виду влияние на сенсорные образования мозга, то наиболее приемлемой для оценки представляется электрическая реакция, регистрируемая либо от проекционной для данной сенсорной системы зоны, либо от периферического отдела сенсорной системы на адекватный раздражитель в условиях воздействия на те зоны мозга, которые осуществляют периферические влияния по типу обратной связи.

Известны работы, выполненные в Институте мозга АМН СССР, свидетельствующие о том, что облучение фокусированным ультразвуком латерального коленчатого тела головного мозга кошки (участка проекционной системы глаза, через который происходит передача зрительной информации в кору головного мозга) вызывает обратимое подавление электрических ответов зрительной коры на световое раздражение глаза. Восстановление зрительных функций животного, оцениваемое на основе электрических ответов корковой зоны, происходит лишь через десятки минут после окончания облучения. Разрушений в мозге не отмечалось. Следует подчеркнуть, что в этих работах эффектов активации не описывалось. Режимы воздействия, правда, отличались от использованных в наших экспериментах. Трудно сказать, в какой мере полученные данные определялись использованными режимами, а в какой мере отсутствие активации является характерным свойством тех зон зрительной системы, которые были подвергнуты действию фокусированного ультразвука.

В наших опытах воздействию ультразвуком подвергся слуховой центр среднего мозга лягушки, представляющий собой уровень 2—4-го синаптического переключения восходящей слуховой афферентации. Этот же центр имеет обратную связь со слуховыми рецепторами, посылая нисходящие к лабиринту волокна. Воздействуя фокусированным ультразвуком на это образование, мы надеялись получить изменения в периферической части слуховой системы, которые можно определить на основании оценки реакции рецепторов на звуковое раздражение до, в процессе и после облучения центральной части слуховой системы. Кроме того, мы хорошо знаем реакции этого центра на звуковое раздражение: ведь именно реакции на звук и ультразвук, сфокусированный на структуры ушного лабиринта, служили способом оценки возбуждения рецепторов, проводниковых систем, а также первым индикатором угнетающего действия ультразвука. Поэтому в ряде опытов мы регистрировали реакцию не только от периферической части слуховой системы — лабиринта, но и электрические ответы на звук до, в процессе и после воздействия ультразвука, сфокусированного прямо в подэлектродную область, т. е. в зону тех структур центра, от которых проводилось отведение электрических реакций на звуковое раздражение. Использовался весь диапазон интенсивностей фокусированного ультразвука — от величин менее 1 Вт/см2 до 600 Вт/см2.

От саккулюса, как наиболее доступной части слухового лабиринта, отводились микрофонные потенциалы, которые, согласно широко принятой точке зрения, являются показателем реакции рецепторных клеток на звук. Было обнаружено, что при направлении ультразвука на структуры среднего мозга никаких изменений микрофонных потенциалов саккулюса не отмечается вплоть до интенсивностей порядка 240 Вт/см2. В этом же диапазоне интенсивностей не меняются электрические реакции слухового центра среднего мозга на звуковое раздражение, в условиях их регистрации непосредственно вблизи фокальной области. При увеличении интенсивности нами были зарегистрированы только эффекты угнетения как по показателям микрофонных потенциалов, амплитуда которых уменьшалась почти на 50%, так и по показателям суммарных электрических ответов среднего мозга на звук, амплитуда которых также резко падала по сравнению с контролем — в условиях отсутствия ультразвукового облучения. Структурных изменений в мозге при действии импульсного ультразвука, по крайней мере до интенсивностей 480 Вт/см2, обнаружено не было.

Значит ли это, что при действии на центральные мозговые структуры ультразвук вызывает лишь угнетение, подобное тому, которое обнаружено на зрительной системе? Или примененные режимы действия не вызывают активации? Или активация осуществляется только в зоне тонких немиэлизированных волокон, которые сосредоточены в зонах дендритных окончаний, не распространяющихся на большие расстояния? Для ответа на эти вопросы требуются дальнейшие исследования, причем на модельных объектах, более простых для анализа.

Известно, что в центральных нервных структурах беспозвоночных, например моллюсков, миэлиновых оболочек нет, а миэлиноподобных оболочек значительно меньше, чем в центральной нервной системе позвоночных животных. Именно поэтому моллюски были выбраны нами для выяснения действия фокусированного ультразвука на клетки центральной нервной системы. Фокусированным ультразвуком облучали клетки подглоточного ганглия виноградной улитки. Его параметры — частота 2.34 мГц, длительность импульса 1 мс — были те же, что и в опытах на позвоночных животных, а интенсивность в центре фокальной области достигала 900 Вт/см2. И при действии таких сильных стимулов активность клеток была зарегистрирована! Значит активация возможна, но только для определенных структур и в условиях больших интенсивностей. Сравнение интенсивностей, вызывающих активацию статоциста того же животного — органа, построенного по типичному механорецепторному типу, показало их резкие различия. Если активация статоциста обнаруживалась при интенсивностях в интервале 80—240 Вт/см2 в центре фокальной области, то для активации клеток подглоточного ганглия нужны были величины интенсивностей почти на порядок больше.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*