Борис Медников - Аксиомы биологии
И невозможность создания вечного двигателя второго рода, при работе которого возникает, а не выравнивается разность температур (или давлений, или электрических потенциалов), стала уже следствием более общего закона самопроизвольного перехода порядка в беспорядок.
Все мы знаем, что для наведения порядка в квартире или хотя бы на письменном столе требуется затратить какую-то долю энергии. А вот беспорядок возникает сам, его специально создавать не нужно.
Чтобы построить жилище – от первобытной хижины до высотного дома, – люди затрачивали уйму энергии. А судьба их творений, если их предоставить самим себе (то есть не тратить энергии на поддержание структуры), была одинаковой: они рассыпались, превращаясь в бесформенные, но зато более вероятные с точки зрения термодинамики груды строительных материалов. Энергия, затраченная на их сооружение, в конце концов переходила в энергию теплового движения молекул, омертвлялась.
А сами структуры наших тел? Не начинают ли они в среднем после 50 лет постепенно распадаться, уступая непреложному росту энтропии? В конечном счете все успехи геронтологии лишь чуть-чуть затормаживают этот процесс. Об этом хорошо сказал Омар Хайам:
В этом мире ты мудрым слывешь?
Ну и что?
Всем пример и совет подаешь?
Ну и что?
До ста лет ты намерен прожить?
Допускаю.
Может быть, до двухсот проживешь.
Ну и что?
Есть, по меньшей мере, добрая сотня гипотез (по некоторым подсчетам, их более двухсот) объясняющих, что такое старость и как с нею бороться. Я с трудом удерживаюсь от желания добавить к ним сто первую, которая кажется мне наиболее обоснованной. Но сейчас не это является нашей задачей. Мы должны понять, что второе начало термодинамики требует постепенного разрушения генетических программ наших клеток. Случайные, непредсказуемые и равнодушные к судьбам организмов изменения генетических программ приводят к нарушению стройного порядка поддержания фенотипов. «Жить значит умирать» (Ф. Энгельс).
Но этого мало. Ведь клетки – предшественники гамет (яйцеклеток и спермиев) – также подвержены мутациям, которые, буде это случится, перейдут в следующее поколение. Дети передадут их внукам добавлением новых (вспоминаются древнеримские стихи: «Отцы были хуже, чем деды – нас негодных вырастили»). Получается, что игра в испорченный телефон от поколения к поколению в конце концов приведет к полному разрушению структур наших организмов, торжеству энтропии.
Итак, мы пришли как будто к печальному выводу: хаос побеждает структуру. Случайные, ненаправленные изменения генетических программ должны, накапливаясь из поколения в поколение, разрушать и сами программы, и те фенотипы, которые этими программами кодируются.
Если бы вывод был только печален. Но ведь он и неверен! Все мы отлично знаем, что структуры живых организмов сохраняются от поколения к поколению. Более того, мы знаем, что в ходе эволюции шло непрерывное усложнение структур. Два миллиарда лет назад на Земле обитали лишь бактерии и синезеленые водоросли. Каких-нибудь 200—300 миллионов лет спустя появляются организмы с оформленным ядром, пока еще простейшие одноклеточные, примитивные грибки. А дальше – кишечнополостные, черви, моллюски. 500 миллионов лет назад на сцену жизни выходят хордовые. «Век рыб» сменяется «веком земноводных», затем «веком рептилий» и, наконец, на высшие ступени в биосфере выходят млекопитающие, затем человек. Где же здесь победа энтропии?
Да и подчиняется ли живая природа второму началу?
Демон Максвелла. Чтобы решить эту проблему, вернемся назад. В прошлом веке великий физик Максвелл предложил поставить мысленный эксперимент. Представьте себе, говорил Максвелл, трубку, заполненную разреженным газом. Трубка посредине разделена перегородкой. В перегородке есть заслонка, дверца. Допустим, что у этой заслонки сидит некоторое существо (или устройство), различающее молекулы по скоростям. Пусть это существо (демон) открывает заслонку перед быстрыми молекулами и закрывает перед медленными, то есть сортирует их по энергиям.
В результате отбора, производимого демоном, быстрые молекулы соберутся в одной половине трубки, а медленные в другой. Один конец устройства разогреется, другой охладится. Общая энергия устройства останется прежней, так что первое начало термодинамики (закон сохранения энергии) мы не нарушим. Но система перешла от более вероятного состояния к менее вероятному. Демон получил разность температур, позволяющую совершить работу, в обход второго начала термодинамики.
На рисунке показана схема, позволяющая воссоздать парадокс
Максвелла. Соберите электрическую цепь с диодом (или иным выпрямителем), пропускающим ток только в одном направлении. Свободные электроны в металле находятся в состоянии хаотического теплового движения (электронный газ). Как и во всяком газе, в нем возникают флуктуации мы их не видим, но слышим как шипение и потрескивание в динамике приемника (там они усиливаются, и они-то как раз являются помехой слабого сигнала). Диод должен сыграть роль демона: пропуская электроны в одну сторону, он создает разность потенциалов, за счет которой можно выполнить работу.
Собрать такую схему в школьном кабинете физики – минутное дело. Еще быстрее мы убедимся, что диод не желает быть демоном – ток в схеме не возникает. Причина? Вернемся к примеру с разреженным газом в трубке. За неимением демона снабдим заслонку какой-нибудь пружиной, которая позволит дверце открываться только после удара быстро движущейся молекулы с высокой энергией. Дверца откроется, чтобы пропустить молекулу, но при этом отнимет у нее энергию на деформацию пружины! В случае с электронами роль пружины выполняет сопротивление диода.
А если у нас все-таки есть демон? Допустим его существование, ведь эксперимент у нас мысленный. Можно допустить даже и то, что на открывание заслонки энергия не расходуется. Но каким образом наш привратник узнает, какую молекулу надо пропустить, а какую нет? Он должен знать скорость молекул, непрерывно получать информацию об их координатах в каждый момент времени. Но информация не дается даром: Л. Бриллюэн показал, что затраты на различение молекул с лихвой компенсируют возможный прирост энергии. Как не вспомнить шутливое замечание о том, что первое начало термодинамики утверждает, что в игре с природой нельзя выиграть, а второе – что нельзя даже остаться «при своих». На атомно-молекулярном уровне отбор оказывается невозможным.
А в живой природе? Тут вступает в действие принцип, который Н. В. Тимофеев назвал принципом усилителя. Правильнее называть его принципом усиления так как под словом «усилитель» обычно подразумевают какое-либо устройство, специально созданное для этой цели. Понять его действие можно из примера, приводимого В. А. Ратнером. Допустим, мы имеем оплодотворенную яйцеклетку – носительницу мутации какого-нибудь гена, кодирующего важный для жизни фермент. В процессе роста и развития организма яйцеклетка превратилась в миллион миллиардов клеток (1015). Соответственно умножились гены. Каждый ген продуцирует, допустим, сто молекул мРНК и на каждой молекуле мРНК синтезируется в среднем сто молекул фермента. Наконец, каждая молекула фермента в минуту осуществляет, скажем, 10 000 актов какой-либо реакции. Итак, 1015•102•102•104= 1023. Вам, должно быть, известно число Авогадро: количество молекул в моле примерно равно 6 • 1023. Вот насколько усиливаются результаты одного-единственного квантового скачка одной мутации!
Это уже ощутимые количества, с которыми может работать демон. И такой демон существует – это естественный отбор, «демон Дарвина», как удачно его назвал известный биохимик, популяризатор и фантаст Айзек Азимов. Именно отбор пропускает в следующее поколение организмы со структурой, не слишком сильно измененной, или с изменением, дающим повышенные шансы на выживание и дальнейшее размножение. Если преимущество обеспечивается усложнением организации – что же, демон Дарвина отберет и пропустит через свою «заслонку» в будущее чрезвычайно редкие варианты, такие, которые редки, как сверхбыстрые молекулы в газе. Так идет прогрессивная эволюция.
Значит ли это, что жизнь не подчиняется второму началу термодинамики, что она не повышает, а понижает энтропию? Высказались и такие мнения. Но это заблуждение. Жизнь нарушает второе начало не большей мере, чем радиоприемник. Все мы по печальному опыту знаем, что банальный транзистор, приняв невообразимо слабый сигнал, может его усилить до такой степени, что возникнет опасность для барабанных перепонок соседей. Но на это затрачивается свободная энергия батареек. Она расходуется, в частности, на преодоление сопротивления диодов и прочих элементов, превращаясь в тепло – хаотическое движение молекул. Из-за угла снова выглядывает ухмыляющаяся энтропия.