KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Владимир Скулачев - Рассказы о биоэнергетике

Владимир Скулачев - Рассказы о биоэнергетике

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Владимир Скулачев, "Рассказы о биоэнергетике" бесплатно, без регистрации.
Перейти на страницу:

Один из ключевых вопросов — это как, каким способом АТФ, АДФ и фосфат переносятся из водной фазы митохондрии в гидрофобную фазу митохондриальной мембраны, чтобы попасть в сферу действия электрического поля?

АТФ, АДФ и фосфат — это весьма гидрофильные многозарядные анионы. Их сродство к воде очень велико, а к липиду — ничтожно. Чтобы помочь этим веществам перейти из воды внутрь мембраны, необходимо какое-то специальное приспособление. Что бы это могло быть?

Помня, каким скользким может быть путь аналогий, мы тем не менее рискнем обратиться к другой белковой системе, также присутствующей в митохондриальной мембране и имеющей дело с АТФ и АДФ. Я имею в виду так называемый АТФ/АДФ-антипортер.

М. Клингенбергом был получен в чистом виде и подробно исследован мембранный белок массой 30 кило-дальтон, способный обменивать содержащийся в митохондриях АТФ на внемитохондриальный АДФ (этот процесс обозначается термином «антипорт»). Выяснилось, что у антипортера есть два места связывания АТФ и АДФ. Белок закреплен в мембране таким образом, что эти два места обращены в воду по разные стороны мембраны. Если к белку на внутренней поверхности мембраны присоединяется АТФ, а на внешней — АДФ, то молекула белка поворачивается на 180 градусов или совершает какое-то более сложное движение, в результате которого участок белка с АТФ появляется снаружи митохондрии, а участок с АДФ - внутри.

Поворот в обратном направлении затрудняется электрическим полем, генерируемым на мембране митохондрий за счет дыхания. Дело в том, что АТФ несет на себе четыре отрицательных заряда, а АДФ — только три. Обмен наружного АТФ4- на внутренний АДФ3- означал бы перенос внутрь митохондрии отрицательного заряда против электрического поля. В то же время обратный процесс должен идти по полю, которое может быть движущей силой такого обмена.

Мой коллега И. Козлов выдвинул предположение, что та часть АТФ-синтетазы, которая имеет дело с АТФ, АДФ и фосфатом, устроена по принципу АТФ/АДФ-антипортера.

Предполагается, что в АТФ-синтетазе есть два места связывания субстратов реакции. Одно из них обращено в водное пространство внутри митохондрии, другое погружено в мембрану.

Согласно гипотезе при синтезе АТФ происходит антипорт АТФ4-/(АДФ3- + РО43-) между двумя местами связывания. Если рассчитать суммарный баланс переносимых при таком антипорте заряженных групп, то окажется, что из воды внутрь мембраны перенесены два отрицательных заряда. Электрическое поле, генерируемое на мембране дыхательными ферментами (минус внутри митохондрий), способствует антипорту АТФ4-/(АДФ3- + РО43-): поле должно удалять АТФ из внутримембранного места связывания, заменяя АТФ на АДФ и фосфат.

Приняв, что синтез АТФ из АДФ и фосфата происходит именно во внутримембранном месте связывания, мы можем объяснить, каким образом поле, создаваемое дыханием, смещает равновесие системы АДФ + фосфат ⇔ АТФ в сторону синтеза АТФ. Поле как бы концентрирует АДФ и фосфат в каталитическом центре АТФ-синтетазы и откачивает оттуда образующийся продукт (АТФ).

Другой «приводной ремень» этого механизма — транспорт протонов.

Предполагается, что 2Н+, фигурирующие в левой части уравнения, поступают в каталитический центр АТФ-синтетазы из водной среды, окружающей митохондрию. Транспорт протонов происходит по полю (в сторону заряженного отрицательного внутреннего объема митохондрии). Тем самым одна и та же сила: разность электрических потенциалов - способствует тому, что к каталитическому центру АТФ-синтетазы с одной стороны мембраны устремляются АДФ и фосфат, а с другой стороны — ионы Н+.

Эта схема непротиворечиво объясняет всю совокупность сведений об АТФ-синтетазе, однако было бы ошибкой считать ее доказанной. Пока она лишь рабочая гипотеза, иллюстрирующая, как мог бы работать один из важнейших мембранных преобразователей энергии.

Цитохромоксидаза

Протонный потенциал, приводящий в движение механизм синтеза АТФ, генерируется ферментами дыхания. Среди них наиболее изучена цитохромоксидаза, последний фермент дыхательной цепи. Цитохромоксидаза катализирует окисление восстановленного цитохрома с кислородом. При этом ион двухвалентного железа (Fe2+), входящий в состав цитохрома с, теряет электрон и превращается в ион трехвалентного железа (Fe3+). Ионы Н+, необходимые для образования воды, черпаются из внутреннего объема митохондрии:

4Fe2 + O2 + 4Н+внутр. → 4Fe2+ + 2Н2О.

Окисленный цитохром с восстанавливается вновь посредством предшествующего компонента дыхательной цепи - производного хинона (он называется убихинол, сокращенно QH2). Процесс происходит таким образом, что ионы Н+, выделяющиеся при этой реакции, остаются снаружи митохондрии:

2QH2 + 4F3+ → 2Q + 4Fе2+ + 4Н+наружн.,

где Q — окисленная форма убихинола, называемая убихиноном. Суммарная реакция окисления убихинола кислородом может быть записана так:

2QH2 + O2 + 4Н+внутр. → 2Q + 2Н2О + 4Н+наружн.

Регенерация QH2 из Q осуществляется в конечном итоге за счет атомов водорода, отщепляемого от карбоновых кислот в цикле Кребса.

Итак, один акт восстановления молекулы кислорода до воды, катализируемый цитохромоксидазой, приводит к выделению четырех ионов Н+ по внешнюю сторону митохондриальной мембраны и к поглощению четырех Н+ по внутреннюю ее сторону.

В простейшем варианте цитохромоксидазного механизма, предложенном в свое время Митчелом, разделение зарядов этим ферментом обусловлено тем, что окисление убихинола происходит на внешней поверхности мембраны, после чего электроны переносятся через мембрану и восстанавливают кислород на противоположной, внутренней, поверхности мембраны. Однако впоследствии молодым финским биоэнергетиком М. Викстремом были поставлены опыты, показавшие, что механизм может быть более сложным. По Викстрему, потребление молекулы кислорода цитохромоксидазой сопровождается выделением не четырех, а восьми ионов водорода снаружи митохондрий.

Цитохромоксидаза

Внешне опыт Викстрема выглядел весьма просто. К митохондриям добавляли восстановленный цитохром и измеряли кислотность среды. Оказалось, что среда закисляется, то есть митохондрии выделяют ионы Н+. Закисление исчезает, если создать бескислородные условия или отравить цитохромоксидазу цианидом.

Такой результат не объяснялся схемой цитохромоксидазы, рассмотренной Митчелом. Ведь цитохром с — донор электронов, окисление его железа (Fe2+) само по себе не может приводить к выделению ионов Н+. Чтобы свести концы с концами, Викстрем предположил, что цитохромоксидаза переносит через мембрану не только электроны, но и протоны, причем потоки этих заряженных частиц направлены в разные стороны: электроны движутся внутрь, а протоны — наружу.

У Митчела цитохромоксидаза играет давно известную для нее роль окислительного фермента — переносчика электронов с той лишь особенностью, что электроны переносятся поперек мембраны.

У Викстрема цитохромоксидаза выполняет сверх того еще и совсем другую функцию, действуя как протонный насос.

Митчел немедленно атаковал Викстрема, увидев в новой схеме ревизию своего механизма, который казался ему таким естественным.

Действительно, генерация протонного потенциала Митчеловой цитохромоксидазой есть прямое следствие химизма этого процесса. Если окисление убихинола и восстановление кислорода происходят по разные стороны мембраны, а цитохромоксидаза связывает эти две реакции, перенося через мембрану электроны, то прямым и неизбежным следствием такого процесса окажется накопление ионов Н+ снаружи митохондрий и их потребление внутри. Никакого специального устройства для генерации потенциала здесь не требуется. Достаточно уложить цитохромоксидазу поперек мембраны, как этот известный биохимикам уже 70 лет фермент автоматически становится генератором протонного потенциала.

С момента первой публикации хемиосмотической гипотезы Митчел и его сторонники всегда приводили цитохромоксидазу как наиболее наглядный пример фермента-генератора. И вот теперь, когда гипотеза Митчела в целом уже доказана, вдруг появляется вихрастый молодой парень из Хельсинки и заявляет в глаза основателю мембранной биоэнергетики:

— Ваш взгляд слишком упрощен. Цитохромоксидаза не только фермент, но и протонный насос!

Сначала Митчел третировал данные Викстрема как примитивный артефакт.

— Выделение протонов при окислении цитохрома с, — говорил он, — обусловлено взаимодействием продукта реакции с мембраной митохондрий.

В ответ на это возражение Викстрем заменил цитохром с искусственным донором электронов — ферроцианидом, который с мембраной не взаимодействует. Выделение Н+ сохранилось.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*