KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Эрнст Зальцер - Гидропоника для любителей

Эрнст Зальцер - Гидропоника для любителей

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Эрнст Зальцер - Гидропоника для любителей". Жанр: Биология издательство неизвестно, год неизвестен.
Перейти на страницу:

Всевозможные "за" и "против" мы обсуждать не будем, откажемся также и от перечисления всех возможностей, позволяющих в гигантских размерах увеличить мировое производство продуктов питания. Мы опробуем лишь проанализировать, какую роль здесь может играть метод выращивания растений без почвы.

Профессор Боас, автор книги "Растения, удобрения и питание", очень четко излагает имеющиеся возможности, констатируя следующее:

"...Простейшее и радикальнейшее средство гигантского умножения продуктов питания заключается в том, чтобы перевести биологическую способность растения – ассимилировать углекислоту – на техническую основу, то есть производить из углекислоты, воды и солей биологически высокоценные продукты питания в массовом количестве. Этим будут разгружены пахотные земли и увеличена площадь Земли".

Что же из этих возможностей уже реализовано и не идет ли здесь речь всего лишь о пустых фантазиях?

Растениеводство на промышленной базе

Так назывался один из проектов, который в небольшом масштабе уже претворен в действительность. Даже не обладая даром прорицания, можно предсказать, что описанные здесь возможности имеют наилучшие перспективы для практического осуществления в большом масштабе, после того как материалы и источники энергии, которые списываются промышленностью как потери найдут полезное применение.

Всегда и везде, когда при помощи тепла производится другой вид энергии, отмечаются чувствительные потери. Превращают ли тепловую энергию в электрическую, механическую или химическую, всегда значительная часть первоначально произведенного тепла остается неиспользованной и теряется в качестве "теплопотерь". Так, при производстве электрического тока из каменного угля 75 – 80% общей энергии списывается в качестве потерь. Теплопотери мы можем обнаружить в отработанной воде от конденсаторов, куда она часто подается из колодцев или рек, и ее температура большей частью составляет 20 – 25 град., то есть лежит в таких пределах, что ее практически больше никак нельзя использовать. Однако картина совершенно меняется, если для конденсаторов в циркуляционном токе будет использоваться та же охлажденная вода. Тогда отработанная вода может иметь температуру до 40 град.

Уже в течение многих лет пытаются каким-либо образом использовать эти тепловые отходы. К сожалению, безуспешно пытались теплой охлаждающей водой обогревать рабочие и жилые помещения. Лишь в последнее время удалось применить тепловые отходы для обогрева теплиц с помощью воздухоподогревательных агрегатов. А принципе они напоминают радиаторы грузовых автомашин, в которых температура охлаждающей воды понижается воздухом, пронизывающим радиатор. Радиатору соответствует агрегат для подогрева воздуха, причем искусственно продуваемый воздух точно так же нагревается и затем обогревает культивационное помещение. Этот метод уже в достаточной степени проверен и, по мнению экспертов, очень подходит, во-первых, для разумного использования промышленных тепловых отходов и, во-вторых, для создания надежно функционирующей дешевой системы обогрева теплиц.



Рис. 52. Растениеводство на промышленной основе: 1 – завод; 2 – газопровод для отработанного газа; 3 – шлаки; 4 – газоочистительная установка; 5 – теплицы; 6 -воздухо-подогревательное устройство; 7 – вода для охлаждения машин: а – холодная; б – теплая; 8 – уголь.


Мы уже упоминали, что тепловые отходы при производстве электроэнергии в форме охлаждающей воды имеют температуру около 40 град. В доменных печах температура охлаждающей воды достигает даже 80 град. Было бы глупо оставлять неиспользованными такие источники энергии.

Таким образом, мы видим, что теплицы могут успешно обогреваться неиспользованными ранее тепловыми отходами, и благодаря этому создается первая предпосылка для круглогодового садоводческого производства (рис. 52). Кто-нибудь может возразить, что в сугубо промышленных районах садоводы будут испытывать затруднения в получении требующихся количеств органических удобрений (навоза). В результате механизации в городе и деревне поставщики навоза стали почти редкостью.

Мы уже знаем должный ответ на это возражение. Этой беде можно успешно противопоставить методы выращивания растений без почвы, причем при гравийной культуре можно даже в известной степени использовать и другие отходы промышленности, а именно каменноугольные шлаки. Эта возможность довольно важна, если учесть, сколько будет стоить равное количество препарированного гравия, которое теперь может быть заменено шлаками самого предприятия, ранее расходовавшего средства на их удаление.

Таким образом, у нас есть теплица, действующая без почвы, в которой, во-первых, находит применение известное количество шлака, почти не представляющего ценности в каком-либо ином отношении, во-вторых, эта теплица обогревается с помощью промышленных тепловых отходов, что почти не отражается на производственных затратах установки. Однако вышесказанным еще не заканчивается перечень идей.

Каждый современный растениевод знаком с огромной ролью углекислоты (собственно двуокиси углерода) для питания растений. В конце концов известно, что сухое вещество растения почти наполовину состоит из углерода, первоначально поглощенного в форме углекислоты воздуха. Обычный воздух содержит 0,03% этого соединения, и в нормальных условиях только этим и располагают ассимилирующие растения. Соответственные научные исследования показали, что продуктивность растений может быть повышена при некотором обогащении воздуха углекислотой, и усиление снабжения растений углекислотой позволяет добиться значительных прибавок урожая. Вообще пышный рост растений в каменноугольный период, когда возникли наши мощные отложения каменного угля, вероятно, справедливо объясняют значительно большим содержанием углекислоты в воздухе в то время.

Промышленные газовые отходы, удаляемые через заводские трубы, содержат в среднем 20% углекислоты и, кроме того, крайне ядовитые для людей и растений окись углерода и сернистый газ. Используя технические возможности и некоторые химические показания, можно получать совершенно чистую углекислоту, пропуская газы через очистительные колонки. Таким образом, ничто не мешает нам превращать газ в превосходные овощи. Концентрация углекислоты может быть соответствующим образом снижена подмешиванием обычного воздуха, и в этой форме она может подаваться в теплицы через уже упомянутые агрегаты для подогрева воздуха. Следовательно, мы в полном смысле слова единой операцией решаем две задачи: обогрева теплицы и одновременно подкормки культур газообразным удобрением.

Вышеизложенные рассуждения должны были бы довольно ясно показать, что использование этих современных возможностей способно обеспечить производство значительных количеств свежих овощей в промышленных центрах. Эти методы, безусловно, не представляют собой домыслов идеалиста, занятого только вопросом о производстве продуктов питания, а, напротив, это логичные рассуждения сугубого реалиста, желающего помочь как промышленности, так и мировому производству продуктов питания путем использования отходов промышленности и источников бесполезного и безвозвратно теряемой энергии.

Водоросли — продукт питания будущего

Для начала мы должны твердо помнить, что водоросли – это также растения, отличающиеся от надземных прежде всего тем, что они не имеют корневой системы. Они поглощают питательные вещества свей своей поверхностью. Водоросли уже в наши дни в больших масштабах выращивают в питательных растворах. Посмотрим же, насколько культура водорослей может смягчить трудности с питание населения земного шара.

Водоросли, вероятно, всегда употреблялись в пищу. Норвежские крестьяне, например, в периоды недостатка кормов скармливают скоту водоросли, преимущественно видов Fucus и Laminaria, которые они собирают на берегу моря. В США в качестве корма для скота продаются так называемые брикеты из водорослей. Бесспорными мастерами в рациональном использовании и приготовлении этих морских растений, по-видимому, все же являются японцы. Они искусственно выращивают водоросли на мелководье (например, в Токийской бухте) и используют их, приготавливая различнейшим образом для питания населения. Хлеб из водорослей, так называемый нори, получил широкую известность благодаря своему хорошему вкусу и полезности.

С некоторого времени ученые всех стран уделяют этим неизменным водным растениям все больше внимания. Японский исследователь Хироши Тамийа считает даже, что "водоросли важнее, чем атомная энергия". Он обосновывает это свое мнение, перечисляя многочисленные ценные свойства водорослей.


Рис. 53. Заводская установка для выращивания водорослей: 1 – газгольдер для углекислоты; 2 – резервуар с питательным раствором; 3 – перекачивающий насос; 4 – источники искусственного света; 5 – прозрачные резервуары для выращивания; 6 – помещение для переработки.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*