KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Владимир Комаров - Происхождение растений

Владимир Комаров - Происхождение растений

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Владимир Комаров, "Происхождение растений" бесплатно, без регистрации.
Перейти на страницу:

Известно, что в некоторых странах Южной Америки и Африки в голодные годы люди пытались многократно есть жирную на вид и мягкую на ощупь глину. На берегах Охотского моря находят так называемую горную сметану, которую также иногда едят. Однако глинистые вещества дыхания и жизни не поддерживают, и питание ими приводит только к своеобразным заболеваниям, не предотвращая исхудания и смерти от голода.

Все пищевые вещества могут гореть, это их общее свойство. Мы даже нередко оцениваем сравнительное достоинство различных видов пищи то теплоте, выделяемой ими при сгорании. Так, обыкновенный, или тростниковый сахар дает от 3921 до 4001 единиц тепла, называемых калориями, на 1 г веса. Крахмал, составляющий основу всякой муки, — от 4146 до 4200 калорий. Мясо без жира 5640,9, а с 7 % жира 5874,4, белок яйца 5711, а чистое коровье масло 9220. Средний человек тратит в сутки, по крайней мере, 2500 тысяч таких калорий и возмещает их пищей.

В то время как человек и животные на процессы горения тратят как углеродистые вещества, способные гореть, так и заключенные в них калории тепла, растения отличаются важнейшей особенностью накапливать их в себе. Происходит это оттого, что растения необходимую им пищу поглощают не в виде углеводов, жиров и белков, а в виде газов воздуха и воды. Из углекислоты воздуха они заимствуют углерод, из воды водород и кислород. Азот, необходимый для образования белков, берется из почвенных солей, растворенных в воде, всасываемой корнями растений. Короче, главная масса пищи, годной для поддержания жизни растений, заимствуется ими из воздуха и воды и лишь незначительная часть из почвы. Последняя доставляет не только азот, но и другие элементы. При сжигании растений остается зола, в которой можно обнаружить все те элементы, которые заимствуются растением из почвы.

Однако углекислота[2] воздуха заключает в себе такой углерод, который гореть не может. Углекислота — продукт полного сгорания углерода: ни при каких условиях она далее не соединяется с кислородом и не может выделить ни одной калории. Чтобы заключающийся в углекислоте углерод получил способность гореть, надо разложить углекислоту, диссоциировать ее, отделить углерод от кислорода, на что требуется огромная затрата тепла. Иначе можно сказать, что углерод углекислоты инертен, лишен энергии, гореть же и поддерживать явления жизни может только такой углерод, который заряжен известным запасом энергии. Потенциальная энергия, скрытая в углероде органических соединений в форме химической энергии, при горении и других окислительных процессах освобождается и переходит или в тепло, или в различные другие формы энергии, соответствующие явлениям жизни.

Зеленое растение устроено так, что может выполнять работу разложения углекислоты, если оно освещено. Источником производимой растением работы являются обычно солнечные лучи. Им могут быть и всякие другие световые лучи, независимо от их источника. Так, растения прекрасно разлагают углекислоту при освещении электрическим светом и даже обыкновенной керосиновой лампой. Иначе говоря, растение является машиной, в которой лучистая энергия света расщепляет угольную кислоту и заряжает частицы углерода энергией, той самой энергией, которая при последующем окислении этого углерода освобождается и вызывает в процессе горения явления света и тепла. Из свободного, заряженного энергией углерода растение и строит необходимые составные части нашей пищи: углеводы, жиры и белки.

Кроме того, мы все время вдыхаем из воздуха кислород, и на каждый кубический сантиметр, поглощенный нашими легкими, выдыхаем равное количество углекислоты. То же происходит при всех процессах горения; наконец, масса углекислоты выделяется вулканами. Казалось бы, что состав воздуха все время должен непрестанно меняться в сторону обогащения его углекислотой и обеднения кислородом. Такая порча воздуха уже давно поставила бы нас в трудное положение. К счастью, состав воздуха за исторические времена не изменился, ибо наряду с процессами образования углекислоты существует процесс восстановления углерода и освобождения кислорода. Процесс этот тесно связан с питанием зеленых растений.

Впервые этот факт обратил на себя внимание английского химика Пристли[3] еще в 1772 г. Открыв кислород, Пристли заинтересовался, естественно, и вопросом, откуда он берется, и нашел, что зеленые растения исправляют воздух, испорченный дыханием животных или горением. В 1779 г. Ингентуз выяснил, что в темноте опыт Пристли не удается и что для выделения растением свободного кислорода необходим свет достаточной напряженности. В 1782 г. Сенебье открыл, что при этом затрачивается углекислота и что выделяемый растением кислород — это тот самый кислород, который был предварительно поглощен растением в виде связанного кислорода углекислоты[4].

Таким образом, наличие на Земле мира зеленых растений обеспечивает питание и дыхание животных и человека, а также накопление горючих материалов, представляющих собою частью также углеводы, частью углеводороды и даже почти чистый углерод.

Без зеленых растений жизнь на Земле была бы ограничена ничтожным кругом некоторых своеобразных по своему питанию бактерий. Все остальные живые существа поддерживают свое существование только благодаря способности растений накоплять углеводы, жиры и белки, а также вырабатывать свободный кислород в количествах во много раз больших, чем это необходимо для их собственных питания, дыхания и роста.

Таким образом, космическое значение растения состоит прежде всего в том, что оно поглощает солнечные лучи, заставляет их заряжать частицы диссоциируемого одновременно из углекислоты углерода потенциальной химической энергией. Оно создает на Земле мощные запасы солнечной энергии, обогащает атмосферу кислородом и образует запасы пищи, обеспечивающие питание животных и человека. Далее мы увидим, что своим химизмом растение воздействует и на неорганическую природу. Для человека растения — неисчерпаемый источник питания и всякого рода индустриального сырья.

Отсюда понятен наш интерес к тому, как это случилось, что на Земле появились зеленые растения, откуда явились первые их зачатки, как они заселили Землю, как преобразовались в современные нам растительные формы и как образовались те леса, которыми мы окружены в настоящее время.

«Формой развития естествознания, поскольку оно мыслит, является гипотеза. Наблюдение открывает какой-нибудь новый факт, делающий невозможным прежний Способ объяснения фактов, относящихся к той же самой группе. С этого момента возникает потребность в новых способах объяснения, опирающегося сперва только на ограниченное количество фактов и наблюдений. Дальнейший опытный материал приводит к очищению этих гипотез, устраняет одни из них, исправляет другие, пока, наконец, не будет установлен в чистом виде закон»[5].

Ф. Энгельс

Глава II


ЗЕМЛЯ ДО ВОЗНИКНОВЕНИЯ НА НЕЙ РАСТЕНИЙ

Работы астрономов, геологов и других ученых над строением и развитием небесных туманностей, звезд, Солнца, планет солнечной системы с их спутниками и нашей Земли позволяют с достаточной вероятностью установить общую картину тех изменений, которым подвергалась наша Земля в течение первых миллионов лет ее существования.

Зародилась она в составе одной из спиральных туманностей, подобной одной из ныне существующих на небо. Туманности эти состоят из быстро движущихся газовых частиц, имеющих более или менее однородное строение. В составе туманностей спектроскоп не обнаруживает линий спектра, по которым можно было бы судить о присутствии здесь определенных химических элементов. Нет ни углерода, ни кислорода, ни азота. Постепенно эта масса первичной материи, сжимаясь и сближая свои частицы, превратила часть энергии этих быстро движущихся частиц в лучистую энергию и приобрела свойства белой звезды. Около 1920 г. очень стройной казалась гипотеза Локайера, выведенная им из анализа звездных спектров. Локайер полагал, что при повышении температуры идет распад вещества до первичной материи, а при охлаждении происходит вновь созидание элементов из этой материи. Поэтому он думал, что на очень горячих космических телах есть только один элемент, именно протоводород, по мере охлаждения к нему присоединяется гелий, затем «протометаллы», еще позднее углерод, азот, кислород и кремний, при дальнейшем охлаждении появляются самые металлы, а протоэлементы исчезают. Согласно этой гипотезе схема звездной эволюции отвечала схеме эволюции химических элементов.

Позднее индийский ученый Мег-Над-Сада показал, что протоэлементы Локайера — не что иное, как ионизированные газы. При температуре в 12 000° ионизируются магний и кальций, а при температуре в 25 000° ионизируются даже водород и гелий.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*