Валерия Черепенчук - Генетика за 1 час
Исследования, которые окончательно доказали «руководящую» роль ДНК в вопросах генетики, провел в 1944 г. сотрудник Рокфеллеровского университета в Нью-Йорке Освальд Эвери (1877–1955 гг.). Он отталкивался от опытов англичанина Фредерика Гриффита (1879–1941 гг.), связанных с изучением пневмококков – бактерий, вызывающих пневмонию. Гриффит обратил внимание на интересный факт: безопасные, невирулентные формы пневмококков (их еще называли шероховатыми из-за того, как они выглядели под микроскопом) в ряде случаев могли трансформироваться в опасные вирулентные, или гладкие, штаммы. Выяснилось это так: лабораторным мышам ввели одновременно живые невирулентные пневмококки и убитые нагреванием вирулентные. Через некоторое время большая часть мышей погибла, а в их крови были обнаружены живые вирулентные пневмококки. Гриффит предполагал, что опасные вирулентные бактерии каким-то образом трансформировали безопасные, значит, должен быть некий фактор, который за это отвечает.
Эвери со своими коллегами решил выяснить, что же это за фактор. Они подвергли бактерии – как безопасные, так и вирулентные – разнообразным воздействиям. Напомним, в то время считалось, что основную генетическую информацию несут белки, следовательно, разрушение белка должно полностью обезопасить вирулентный пневмококк. Но дезактивация белка не дала результатов. Разрушение клеточных стенок тоже ни к чему не привело. Во время новых опытов по образцу проведенных Гриффитом мыши продолжали погибать. Так, практически методом исключения, Освальд Эвери выяснил, что только одно вещество может являться причиной трансформации безопасных бактерий в опасные – это ДНК, дезоксирибонуклеиновая кислота. Разнообразные способы воздействия на бактерию разрушали разные ее элементы, но ДНК оставалась невредимой. В ходе эксперимента невирулентные пневмококки захватывали ее, получали новые свойства и в итоге убивали мышей.
Через несколько лет, в 1952 г., выводы Эвери были подтверждены опытами американских генетиков Алфреда Херши (1908–1997 гг.) и Марты Чейз (1927–2003 гг.). Интересно, что заслуги Херши в 1969 г. были отмечены Нобелевской премией. А Освальд Эвери таковой не получил…
Если ДНК несет в себе и передает столь важную информацию, то каким образом она это делает?
Следующей ступенью исследовательской работы должно было стать описание молекулярной структуры дезоксирибонуклеиновой кислоты. Исследования шли параллельно в США и Великобритании, но самые серьезные достижения были сделаны группой ученых, которой руководил в Королевском колледже Лондона Морис Уилкинс (1916–2004 гг.): в начале 1950-х гг. они получили рентгеновские снимки структуры ДНК. Вероятно, наибольший вклад в работу группы внесла Розалинд Франклин (1920–1958 гг.). Именно ей принадлежала идея использовать рентгеновские лучи в изучении сложных биологических молекул. Но, к сожалению, впоследствии она не нашла общего языка с остальными членами группы и отошла от исследований. А дружба-соперничество Мориса Уилкинса с работавшими в Кембридже Джеймсом Уотсоном (1928 г. р.) и Френсисом Криком (1916–2004 гг.) привела к тому, что между двумя университетами развернулось форменное соревнование. Опубликованные в 1953 г. результаты исследований структуры ДНК были подписаны именами Крика и Уотсона.
Как можно вкратце изложить их?
Любая ДНК – это очень, очень длинная молекула. Она состоит из так называемых нуклеотидов – эти вещества являются источниками энергии, способствуют активации разнообразных процессов в клетке, играют связующую роль. Всего нуклеотидов четыре вида: аденин (А), тимин (Т), гуанин (Г), цитозин (Ц). Они в строгом порядке выстраиваются в цепочку, причем в каждой молекуле ДНК таких цепочек две. Они спирально закручиваются вокруг друг друга. Цепочки не разваливаются и не перепутываются, так как составляющие их нуклеотиды комплементарны друг другу: их химические свойства обеспечивают прочную связь. Чтобы нить ДНК стала еще более компактной, она не только закручивается по спирали, но и может сматываться, почти как нитка, в клубок.
Теперь вернемся к неоднократно встречавшемуся понятию «ген». Каждый ген, например, отвечающий за группу крови, цвет глаз и другие характеристики организма, представляет собой определенный участок ДНК, состоящий из жестко закрепленной комбинации-последовательности нуклеотидов. Количество их в гене неизменно.
Все гены того или иного организма обозначаются общим понятием «геном». Впервые термин был предложен еще в 1920 г. биологом Гансом Винклером (1877–1945 гг.), но, как видите, для более четкого понимания потребовалось несколько десятилетий. Каждый геном делится на определенное количество молекул ДНК, а одна пара молекул ДНК составляет хромосому. У каждого организма строго определенное число хромосом: у человека – 46 (23 пары), у шимпанзе – 48 (24 пары), у шакала – 78 (39 пар), у кукурузы – 20 (10 пар). Причем ген, ответственный за тот или иной признак, всегда локализован в определенном месте определенной хромосомы! Соответственно, с развитием генетики все хромосомы в том или ином организме было решено пронумеровать.
В процессе деления клетки молекулы ДНК копируются в хромосомах. ДНК любят сравнивать с закодированной матрицей, поскольку закрепленную на ней информацию надо расшифровать и перенести к другим частям клетки. В роли переносчика выступает РНК – рибонуклеиновая кислота, благодаря некоторым особенностям своего химического состава обладающая способностью (в отличие от ДНК) проникать из ядра в цитоплазму клетки. Приблизительно процесс можно представить так: особый фермент копирует активные гены ДНК, нанизывая их на основу, в итоге появляется РНК. Она покидает ядро клетки, после чего в цитоплазме особые структуры – рибосомы – считывают информацию и в ходе сложных химических реакций формируют белок, который будет выполнять дальнейшую строительную работу. Можно сказать, что ген, как компьютерная программа, планирует дальнейшую работу белков и воспроизведение признаков и свойств организма. У всех организмов на Земле – от самых простых до сложнейших – наследственность закодирована в жестких последовательностях нуклеотидов, в ДНК.
Возвращаясь к ученым, которые занимались расшифровкой структуры ДНК, скажем, что в 1962 г. Джеймс Уотсон, Морис Уилкинс и Фрэнсис Крик получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся молекулярной структуры нуклеиновых кислот и их значения для передачи информации в живых системах». Розалинд Франклин, чей вклад в работу над структурой ДНК сложно переоценить, скончалась в 1958 г. Нобелевским лауреатом она не стала – посмертно премия не присуждается.
В последующие годы было сделано много важных открытий. Возвращаясь к теме мутаций (которая в большинстве случаев вызывается каким-либо повреждением цепочки ДНК), скажем, что исследования выявили очень узкую направленность ряда мутагенов. Большинство из них воздействуют только на определенные нуклеотиды (аденин, гуанин и так далее). Это дает возможность целенаправленно воздействовать на определенные участки ДНК, чтобы получить тот или иной результат. Впрочем, как мы помним, тема индуцированных мутаций – одна из самых сложных с моральной точки зрения. И в последние годы дискуссии по поводу этичности тех или иных исследований, связанных с вмешательством в структуру ДНК, происходят все чаще. Правда, развитие и совершенствование лабораторной техники позволяет проводить генетические исследования на микроорганизмах, что несколько успокаивает блюстителей морали.
2.9. Ученые разгадывают ребус: расшифровка генетического кода
После первых успехов в изучении структуры ДНК ученые не собирались почивать на лаврах. Да, им удалось доказать, что именно ДНК несет основную генетическую информацию и дает «команду» белкам начинать работу. В 1958 г. Фрэнсис Крик сформулировал центральную догму молекулярной биологии: информация передается от нуклеиновых кислот к белку, но не в обратном направлении. ДНК можно сравнить с матрицей, неким банком данных, который должен доставить информацию к запасам строительного материала – белкам. РНК играет роль носителя информации, природной флешки, которая копирует часть ДНК и несет информацию дальше. И только после вмешательства РНК белок приступает к творчеству. Как будто бы простая схема. Но как конкретно происходит передача информации? Ведь, как мы говорили, ДНК состоит из четырех видов нуклеотидов. Белки, к которым передается информация, построены из 20 видов аминокислот. Так каким же образом на основании обработки нуклеотидов получаются белковые композиции? Каким образом разнородные элементы «понимают» друг друга? Как белки узнают, что они должны начать действовать определенным образом? Видимо, существует некий генетический код?