KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Рената Петросова - Обмен веществ и энергии в клетках организма

Рената Петросова - Обмен веществ и энергии в клетках организма

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Рената Петросова, "Обмен веществ и энергии в клетках организма" бесплатно, без регистрации.
Назад 1 ... 8 9 10 11 12 Вперед
Перейти на страницу:

Впервые на этот вопрос попытались ответить в 1961 г. ученые Франсуа Жакоб и Жак-Люсьен Моно. Проведя ряд экспериментов на бактериях с пересаживанием их на разные искусственные среды, они обнаружили, что синтез некоторых ферментов у бактерий может как подавляться, так и активизироваться в зависимости от среды.

Ф. Жакоб и Ж.-Л. Моно предположили существование механизмов, включающих (активирующих) и выключающих (репрессирующих) гены. Такими регуляторами могли быть только белки. Согласно гипотезе Жакоба и Моно, на ДНК существует два вида генов: структурные гены, которые определяют структуру ферментов или других белков с различной функцией, и регуляторные гены, которые ответственны за синтез специальных регуляторных белков. Регуляторные белки связываются непосредственно с ДНК и определяют активность того или иного участка.

Ген-регулятор содержит генетическую информацию для синтеза белка-регулятора, который воздействует на определенный участок молекулы ДНК — оператор. За оператором находится зона структурного гена, но для функционирования последнего необходимо связывание белка-регулятора с оператором или, наоборот, освобождение оператора от белка-регулятора (рис. 26, А). Участок на ДНК, состоящий из зоны оператора и структурного гена, называется опероном. Таким образом, белок-регулятор руководит работой всего оперона.

Рис. 26. А — схема оперонной регуляции активности генов (схема Жакоба и Моно); Б — механизм двойной регуляции клеточного метаболизма (сплошной линией показана прямая регуляция, пунктиром — обратная связь)


В настоящее время имеются данные о том, что на ДНК существует специальная зона рядом с оператором, где связывается фермент РНК-полимераза, обеспечивающий процесс транскрипции. Эта же зона определяет, на какой из цепей ДНК будет происходить синтез РНК.

Белки-регуляторы включают и выключают активность структурных генов, причем иногда для включения одного структурного гена необходимо несколько белков-регуляторов. Возможно, в клетке существует разветвленная система взаимодействия белков, согласно которой одни регуляторные гены действуют на другие и т. д. Комбинация нескольких регуляторных белков осуществляет активацию или торможение структурных генов. Однако не все регуляторные белки равны по значимости. Имеются такие регуляторы, которые координируют работу целой системы генов-регуляторов органа и организма. Например, отсутствие одного-единственного регулятора мужского полового гормона тестостерона приводит к тому, что эмбрион с мужским типом наследственной информации развивается по женскому типу.

Биосинтез белка состоит из целого ряда реакций, поэтому на пути от ДНК к белку контроль может осуществляться на любом этапе. Первичный контроль синтеза белков осуществляется на уровне транскрипции при участии регуляторных белков. Кроме того, он может осуществляться на этапе созревания иPHК (процессинга), транспорта РНК из ядра в цитоплазму, в процессе трансляции и, наконец, после синтеза белка при его модификации.

Кроме прямой регуляции, идущей от белка-регулятора к структурному гену, в клетке осуществляется и обратная регуляция — от структурного белка или продукта, синтез которого катализирует данный белок, к регуляторному белку (рис. 26, Б). Так, при возрастании концентрации конечного синтезируемого продукта это вещество может связываться с регуляторным белком, который, в свою очередь, заблокирует синтез иPHК, а следовательно, и синтез белка. В этом случае происходит ингибирование по типу обратной связи.

Процесс регуляции довольно сложен и, несомненно, находится под контролем генетического аппарата клетки. Механизм двойной регуляции активности генов обеспечивает взаимодействие содержимого цитоплазмы, ядра и внешней среды, весь клеточный метаболизм. При повышении концентрации в клетке какого-либо продукта за счет обратной связи происходит блокирование дальнейшего синтеза, при понижении концентрации синтез вновь может возобновиться.

Рассмотрим еще один пример, связанный с изменением количества АТФ в клетке. Концентрация АТФ поддерживается в клетке на определенном уровне. Ее понижение служит сигналом для ферментов, расщепляющих глюкозу. Структура ферментов изменяется, они активизируются. Начинается активный распад глюкозы, сопровождающийся синтезом АТФ. Пока клетка использует активно АТФ, ее синтез продолжается. Как только активность клеточных процессов понижается или прекращается, концентрация АТФ возрастает до уровня нормы и блокирует деятельность ферментов, расщепляющих глюкозу.

Клетка сохраняет свою стабильность и устойчивость за счет динамического равновесия между ядром и цитоплазмой, клеткой в целом и внешней средой. Это свойство живой системы носит название гомеостаза. Гомеостатические механизмы в клетке разнообразны. Это буферные системы клетки, обеспечивающие постоянство pH среды, оперонная регуляция процессов синтеза веществ, изменение концентрации веществ в клетке, а также и другие механизмы. На клеточном уровне происходит саморегуляция и оптимальное функционирование живой системы.

Вопросы и задания для самоконтроля

1. Какие два типа белков по характеру деятельности синтезируются в клетке? В чем их основное различие?

2. Как происходит регуляция деятельности клетки на уровне ДНК?

3. В чем смысл регуляции обменных процессов в клетке?

4. Какие системы, поддерживающие клеточный гомеостаз, вам известны? В чем их особенность?

Заключение

Основой жизнедеятельности клетки является обмен веществ и превращение энергии — метаболизм. Метаболизм клетки представляет собой сложный многоэтапный процесс, состоящий из ассимиляции (реакций синтеза) и диссимиляции (реакций распада). Эти процессы взаимосвязаны и обеспечиваются ферментативными системами клетки.

Первичный синтез органического вещества — фотосинтез осуществляется из неорганических веществ под действием энергии солнечного света. Он обеспечивает аккумуляцию этой энергии в энергию химических связей органических веществ.

Все остальные процессы метаболизма, протекающие в клетке, используют энергию химических связей, запасенную в первичносинтезированных органических веществах. Превращение энергии в клетке осуществляется универсальным источником энергии — АТФ.

Реализация наследственной программы осуществляется в результате реакций матричного синтеза. В ДНК закодирована информация о структуре РНК и белков. Их синтез осуществляется в процессе матричных реакций. Специфичность структуры белков связана с генетическим кодом и генами, представленными в молекулах ДНК в виде последовательности нуклеотидов. В клетке имеются регуляторные и структурные гены. Активность структурных генов регулируется путем воздействия белков-регуляторов, осуществляющих контроль.

Регуляторные гены обеспечивают реализацию специфической генетической информации в каждой конкретной клетке. Клетка сохраняет свою стабильность и устойчивость за счет динамического равновесия между ядром и цитоплазмой. На клеточном уровне происходит саморегуляция и оптимальное функционирование живой системы.

На уровне клетки реализуются все основные свойства живого: питание, дыхание, выделение, рост, размножение, обмен веществ и энергии с окружающей средой.

Примечания

1

Возбуждение, избыток энергии.

Назад 1 ... 8 9 10 11 12 Вперед
Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*