Анатолий Клёсов - Кому мешает ДНК-генеалогия? Ложь, инсинуации, и русофобия в современной российской науке
Приходится на этом столь подробно останавливаться, потому что в последнее время усиленно распространяется легенда, что расчеты по снипам – значительно более точные, чем любыми другими методами. Историки могут принять эту легенду за чистую монету, и опять повторится ситуация последних 15 лет, когда практически все расчеты популяционными генетиками, опубликованные в академических журналах, были кардинально искажены, с завышениями до 300–400 %. Для расчетов на времена удаленные, как правило, более 5-10 тысяч лет назад, и тем более на 100–200 тысяч лет назад, когда число снип-мутаций исчисляется многими сотнями, расчеты по снипам действительно могут оказаться полезными, но вводимые постулаты, как равенство датировок для «параллельных» снипов, опять сводит эту пользу к нулю, если не к отрицательным величинам.
Так что да, я весьма критически отношусь к расчетам датировок по снипам, если они не подтверждены перекрестными расчетами с использованием других методов, например, по мутациям в гаплотипах, о чем речь пойдет ниже. Но часто бывает, что другие методы непригодны, или нет соответствующих гаплотипов. Тогда приходится принимать то, что есть. Но часто бывает, что совпадение расчетов по снипам и гаплотипам вполне удовлетворительное. Это придает уверенность, что в принципе подход, основанный на числе снипов, правильный, но он нуждается в доработке.
Здесь надо сказать, что попгенетики опять в своем амплуа – Балановский уже провозгласил, что метод расчетов по снипам самый точный, и ненавистные ему расчетные подходы ДНК-генеалогии можно отставить. Это опять было провозглашено без какого-либо исследования, и единственная статья, в которой Балановский этот метод использовал, дала неверные результаты. Дело в том, что Балановский в своей манере выхватил из многих вариантов лишь одну скорость мутации – 122 года на снип, без малейшего ее обоснования или проверки, и опять получил неверные датировки[15].
Вопрос 14: Что такое гаплотип, и откуда получают те числа, которые показаны при записи гаплотипов?
Эти числа называются «аллели», и показывают, сколько раз определенная (относительно короткая) последовательность нуклеотидов повторяется в Y-хромосоме ДНК человека. Например, такая последовательность: аденин-гуанин-аденин-тимин, или в сокращенном виде АГАТ, или, как чаще записывают, AGAT. Участок Y-хромосомы, в котором имеет место такой повтор, который еще называют «тандемным повтором», четко определен, и носит название DYS393 (DYS означает DNA Y-chromosome Segment, то есть “сегмент Y-хромосомы ДНК). Каждый из таких участков ДНК называется «маркером», и таких маркеров в Y-хромосоме человека примерно 2500.
В моем гаплотипе, приведенном выше, как и в гаплотипах обоих киргизов, это – первое число, равное 13. Это записывается как DYS393=13, и означает, что у всех нас в данном маркере четверка AGAT повторяется 13 раз. Вот так:
и эти повторы обрамляются уже неупорядоченными последовательностями нуклеотидов в ДНК, как показано выше.
Второе число, аллель в маркере DYS390, у нас троих у всех разное, у меня 24, у одного из упомянутых киргизов 25, у другого – 26. Это – суммарное число повторов других тандемных четверок, а именно TCTG, то есть тимин-цитозин-тимин-гуанин, и ТСТА, тимин-цитозин-тимин-аденин.
В данном случае четверка, TCTG переходит в четверку TCTA, и число повторов складывается.
То есть мы видим, что тандемные повторы состоят не только из разных нуклеотидов в разных комбинациях, и различаются не только числом повторов, но и порой разные повторы комбинируются в одном маркере. Все это создает огромное число вариантов комбинаций, и, как уже было упомянуто, в Y-хромосоме имеется примерно 2500 разных маркеров. Из них в ДНК-генеалогии используется пока не так много, немногим более ста, в редких случаях несколько сотен, как будет показано ниже. Большинство их стандартизованы, то есть записываются в стандартном виде, содержат определенное число аллелей, записанных в определенной последовательности. Ниже я продемонстрирую разные варианты гаплотипов, взяв свой за пример.
Гаплотипы ДНК выбирают так, чтобы в них маркеров было как можно больше (но все-таки чтобы оставаться в рамках практичности), и в ранних работах, примерно до 2005-го года, использовались 6-маркерные гаплотипы, как, например, такой
16 12 24 11 11 13
Это – аллели в маркерах DYS19, DYS388, DYS390, DYS391, DYS392 и DYS393. Видно, что в ранних работах маркеры в гаплотипах располагали в порядке нумерации. Но система быстро сбилась из-за ее непрактичности, потому что при добавлении новых маркеров приходилось опять перетасовывать всю цепочку гаплотипа. Поэтому до 12-маркерных гаплотипов (в 7-, 8-, 9-, 10-, 11-маркерных) наблюдается разнобой в их последовательности, а с 12-маркерных система в целом упорядочивается, и новые маркеры просто добавляются к первым 12 маркерам:
13 24 16 11 11 15 12 12 10 13 11 17
Это – маркеры DYS393, DYS390, DYS19, DYS391, DYS385a, DYS385b, DYS426, DYS388, DYS439, DYS389-1, DYS392 и DYS389-2.
Впрочем, некоторый разнобой есть и здесь. Например, последняя аллель записывается в двух вариантах – как записано выше (DYS389-2 = 17), и как сумма DYS389-1 и DYS389-2, то есть 30. На мой взгляд, лучше первый вариант, потому что со вторым часто происходит путаница с подсчетом числа мутаций. Например, если мутация в маркере DYS389-1 изменила величину аллели с 13 до 14, то сразу видно, что там всего одна мутация:
13 24 16 11 11 15 12 12 10 13 11 17
13 24 16 11 11 15 12 12 10 14 11 17
А во втором варианте записи имеем
13 24 16 11 11 15 12 12 10 13 11 30
13 24 16 11 11 15 12 12 10 14 11 31
и для неопытного глаза представляется, что там прошли две мутации.
Далее идут 17-, 19- и 23-маркерные гаплотипы, в которые имеются уже несколько рассогласований – и по порядку маркеров, и по величинам аллелей, но не будем на этом здесь останавливаться.
Далее идут 25-маркерные гаплотипы, в которых к первой 12-маркерной панели добавлена вторая, 13-маркерным панель:
13 24 16 11 11 15 12 12 10 13 11 30–16 9 10 11 11 24 14 20 34 15
15 16 16
и 37-маркерные
13 24 16 11 11 15 12 12 10 13 11 30–16 9 10 11 11 24 14 20 34 15 15
16 16–11 11 19 23 15 16 17 21 36 41 12 11
Здесь показан пример записи гаплотипов с разделительными дефисами (или тире) между панелями гаплотипов, чтобы не сбиваться при длинных, монотонных последовательностях чисел. Сейчас работа рутинно ведется с 67-маркерными гаплотипами
13 24 16 11 11 15 12 12 10 13 11 30–16 9 10 11 11 24 14 20 34 15 15
16 16–11 11 19 23 15 16 17 21 36 41 12 11–11 9 17 17 8 11 10 8 10
10 12 22 22 15 10 12 12 13 8 15 23 21 12 13 11 13 11 11 12 13
и 111-маркерными гаплотипами
13 24 16 11 11 15 12 12 10 13 11 30–16 9 10 11 11 24 14 20 34 15 15
16 16–11 11 19 23 15 16 17 21 36 41 12 11–11 9 17 17 8 11 10 8 10
10 12 22 22 15 10 12 12 13 8 15 23 21 12 13 11 13 11 11 12 13–31 15
9 15 12 25 27 19 12 12 12 12 10 9 12 11 10 11 12 30 12 14 25 13 9 10
18 15 20 12 24 15 12 15 24 12 23 19 11 15 17 9 11 11
Это все, напоминаю, гаплотип одного и того же человека, автора данной книги, все они – один и тот же «ДНК-генеалогический паспорт», только с разным разрешением, которое, естественно, тем больше, чем более протяженный гаплотип. Но наука на этом не останавливается, и, например, у того же автора определен уже 431-маркерный гаплотип:
13 24 16 11 11 15 12 12 10 13 11 30 16 9 10 11 11 24 14 20 34 15 15 16
16 11 11 19 23 15 16 17 21 36 41 12 11 11 9 17 17 8 11 10 8 10 10 12 22
22 15 10 12 12 13 8 15 23 21 12 13 11 13 11 11 12 13 31 15 9 15 12 25
27 19 12 12 12 12 10 9 12 11 10 11 12 30 12 14 25 13 9 10 18 15 20 12
24 15 12 15 24 12 23 19 11 15 17 9 11 11 10 12 15 15 10 10 8 8 9 13 7 8
10 10 13 14 14 15 31 32 11 10 9 9 8 24 8 8 8 16 22 22 24 21 23 14 16
25 28 15 15 6 11 14 15 8 14 11 12 10 11 10 10 11 11 18 10 12 10 7 10 5
8 9 5 5 11 15 8 29 6 7 10 13 11 6 7 7 7 16 10 11 16 22 23 11 12 12 10 7
12 12 13 7 3 20 18 11 11 8 9 13 13 10 11 22 12 16 13 14 11 11 12 10 12
9 13 9 12 11 12 16 7 14 12 10 9 10 4 7 7 13 13 12 11 9 11 10 11 14 8 4 8
6 11 11 16 9 11 13 19 12 12 9 10 9 9 11 11 9 9 14 14 15 9 7 10 12 14 13
14 14 12 6 32 10 11 16 8 7 17 17 11 11 6 13 12 13 11 10 7 13 12 7 12 12
7 14 17 17 11 25 8 8 12 8 8 1113 11 12 10 8 13 8 13 14 10 11 9 20 17 15
36 9 13 14 39 33 36 9 10 10 12 18 19 13 9 14 44 10 8 14 9 8 20 11 11
11 11 10 9 9 9 8 8 8 8 9 11 9 23 11 9 16 31 8 20 8 13 12 8 16 10 9 33
27 23 22 10 8 12 10 8 14 8 8 32 55 7 7 5 9 6 11 11 11 13 9 39 33 7 8
27 7 5 13 7 15 28 25 60 42 12 31 22 20 12 3 4
Таких гаплотипов в мире определено пока всего несколько десятков, так что практическая польза от них пока невелика, за исключением нескольких специальных случаев, которые будут пояснены ниже.
В академических публикациях по популяционной генетике, впрочем, пока продолжают использовать гаплотипы от 8- до 17-маркерных, и лишь в крайне редких случаях более протяженные, и это тот случай, когда «любители» далеко обогнали профессионалов. Хотя те «любители» на самом деле зачастую намного квалифицированнее профетоионалов, это просто профессионалы называют тех «любителями», чтобы не признавать свое колоссальное отставание и интеллектуальный застой в популяционной генетике. Этого вопроса мы коснемся ниже, его не обойти при изложении ДНК-генеалогии.
Вопрос 15. После изложения основ ДНК-генеалогии и ее отличий от популяционной генетики, подведите, пожалуйста, итоги по значимости ДНК-генеалогии, о том, как она появилась и какие в этой области Ваши самые значимые публикации.