KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Биология » Владимир Комаров - Происхождение растений

Владимир Комаров - Происхождение растений

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Владимир Комаров, "Происхождение растений" бесплатно, без регистрации.
Перейти на страницу:

2. Результат испарения: вода в атмосфере, вода облаков и туманов. Вода разражающихся дождей, снегов и пр.

3. Вода в растениях как химическое сырье, входящее в реакции синтеза при образовании белков, жиров, углеводов и пр. В процессе дыхания и посмертно при разложении растительного вещества процессами гниения, брожения, тления и пр. большая часть этой воды, если не вся она, возвращается в атмосферу.

4. Вода, связанная в соединения кремния в земной коре, а также вода других соединений, образующихся в глубинных областях земной поры. Кроме того, следует учитывать и водород сернистых и хлористоводородных соединений, а также свободный водород, выделяемый вулканами.


Еще Кант в своей космогонии[21] указывал на возможность того, что в результате постоянно идущих процессов связывания воды вся она со временем израсходуется и свободной воды на Земле не останется, почему и жизнь должна исчезнуть. Современная наука выяснила, что процессы освобождения воды из гидратов достаточно мощны, чтобы поддерживать равновесие между водой, вновь образующейся, и водой, входящей в различные сложные соединения, на долгое время.

4. АЗОТ

Азот — необходимая составная часть живого вещества. Вопрос об усвоении его растениями является вопросом первостепенной важности. В сухом веществе растения содержится всего лишь около 1,5 % азота, однако он необходим для образования протеиновых соединений, без него нет белка, нет протоплазмы. Растения, выращенные в почве, лишенной соединений азота, остаются карликами, несмотря на благоприятные общие условия роста.

Основной запас азота — это океан атмосферы, нас окружающей. Зеленые растения лишены способности связывать свободный азот атмосферы, и долгое время агрономы и физиологи растений полагали, что свободный азот атмосферы и связанный азот органических соединений друг в друга не переходят. При гниении белков образуются аммиачные соединения, которые затем окисляются особыми селитряными бактериями в соединения азотной кислоты, а последние, входя в почвенный раствор, обеспечивают в дальнейшем рост растений. Таким образом, круговорот связанного азота захватывал только азот белков и азот азотнокислых солей почвы, если не считать промежуточных реакций. Позднее был открыт целый мир почвенных бактерий, которые обладают способностью окислять свободный азот атмосферы, проникающий в поры почвы вместе с воздухом. Их иногда называют азотособирателями. Способность их связывать азот, точнее, заключается в том, что их протоплазма вырабатывает катализаторы или энзимы, вызывающие соединение азота с кислородом воздуха, водой или так называемым водным остатком (ОН). Благодаря этому в почве постоянно образуются запасы азотнокислых солей, за счет которых растения могут строить свои белки и снабжать азотистой пищей животных и человека.

Кроме того, раз вошедший в состав живого вещества азот надолго входит в круговорот жизни. Дело в том, что и отбросы животных и белковые вещества мертвых животных и растений быстро разлагаются бактериями, вызывающими сложные процессы брожения и гниения.

При этом, благодаря опять-таки бактериям, азот белков переходит в азот соединений аммиака, азот аммиака — в азот азотноватой и азотистой кислот, а азот последних — в азот азотной кислоты. Последний легко образует в почве селитру или азотнокислый кальций и поглощается корнями растений, которые снова используют его на постройку белков.

Круговорот азота таков:


1. Газообразный азот атмосферы.

2. Окисление его почвенными бактериями в азот азотной кислоты. Образование солей последней.

3. Использование солей азотной кислоты растениями. Образование растительных белков (протеинов).

4. Питание животных растительными протеинами.

5. Образование животными отбросов, богатых азотом. Умершие животные и растения с их белками.

6. Процессы гниения, переводящие азот белков в азот соединений аммиака, кратко называемых амидами.

7. Окисление азота амидов нитритными бактериями в азот азотистой кислоты.

8. Окисление азота солей азотистой кислоты нитробактериями в азотную кислоту. Образование ее солей.

9. Использование растениями этих солей.


Содержание свободного азота в атмосфере и его связывание работою почвенных бактерий, по-видимому, шли равномерно в течение всей истории жизни на Земле. Кроме того, в круговорот жизни входит в незначительном количестве еще и азот неорганического происхождения. Хотя в породах литосферы его и не содержится, но зато в воздухе свободный азот, как показал уже Кавендиш в XVII в., соединяется с кислородом при действии электрических искр во время гроз. Так как при этом обычно нет недостатка и в воде, то получается соединение, содержащее в себе азот, водород и кислород, именно азотная кислота (HNO3). В других случаях, если в соединение вступает не вода, а свободный водород, то электрические разряды вызывают образование аммиака (NH3). Вот почему дождевая вода может содержать в себе небольшую примесь азотной кислоты или аммиака.

В результате всего этого запас азота сравнительно с потребностью очень велик и не внушает никаких опасений со стороны его возможного истощения.

5. ЗОЛЬНЫЕ СОСТАВНЫЕ ЧАСТИ

Как мы видели, количества их, обращающиеся в организмах, очень невелики. Тем не менее в определенных участках земной коры всегда может оказаться временная недостача того или другого необходимого для жизни элемента. Поэтому перемещения и накопления их растениями и животными имеют большое значение. Каждый атом серы или фосфора, входящий в состав живого вещества, постоянно меняет своего носителя. То он входит в состав луговой травы, то отзывается в теле быка, съевшего эту траву, то переходит в тело человека, съевшего кусок мяса. Умер человек — и те же атомы серы и фосфора будут использованы бактериями гниения, а от них перейдут в почву и там снова будут в виде какой-либо соли серной или фосфорной кислоты поглощены корнем того или другого растения. Атомы эти могут быть одни и те же, может быть, на протяжении всей истории живых существ, насчитывающей не менее 300 млн. лет.

Если уточнять только что сказанное, то необходимо подчеркнуть значение тех элементов золы, без которых невозможно правильное развитие зеленых растений, а следовательно невозможен и круговорот жизни.

Сера необходима для образования белков, так как она непосредственно входит в состав протеинового вещества. Источником серы для корней растений являются соли серной кислоты, находящиеся в почве. Особенно важны сернокислые кальций, магний, аммоний, натрий. При замене сернокислых соединений сернистыми растения страдают. Гниение растительных и животных веществ обычно сопровождается выделением сероводорода и, отчасти, меркаптанов. Запах сероводорода — типичнейший признак гнилостного распада… Если этот процесс происходит в воде, то сероводород накопляется в растворе и делает жизнь для большинства обычных организмов воды невозможной.

Зато здесь быстро развиваются серобактерии, которые по данным С. Н. Виноградского (1887 г.) окисляют сероводород с образованием воды и серы. Сера в виде полужидких капель отлагается в протоплазме этих бактерий и служит им запасным веществом, поддерживающим их экзотермическую реакцию, которая в данном случае заменяет дыхание. В дальнейшем сера окисляется по формуле S2 + 2Н2O + 3O2 = 2H2SO4, причем выделяется свободная серная кислота, сейчас же дающая с основаниями сернокислые соли. В морских лиманах и некоторых озерах можно встретить массы различных серобактерий, устилающих их дно плотным ковром белой или различных оттенков красной и фиолетовой окраски. Таким образом, основной круговорот серы в явлениях жизни это: 1) сера белков, 2) сера сероводорода, 3) сера в протоплазме серобактерий, 4) сера сернокислых соединений в водоемах и в почве. Если в последней мало серы, то приходится удобрять поля гипсом, т. е. сернокислой солью кальция.

Основным запасом серы на Земле являются, кроме горных пород органического происхождения, еще и вулканические явления.

Фосфор совершенно необходим, так как без него не образуются нуклеины, т. е. вещества клеточных ядер. В отсутствие фосфора развитие растений останавливается. «Органический фосфор, входящий в состав тела животных и растений, после их отмирания попадает в почву и подвергается здесь воздействию разнообразных биохимических агентов, постепенно минерализуясь и переходя в форму солей фосфорной кислоты, когда он вновь становится доступным для питания зеленых растений — этих первоисточников жизни на нашей планете» (Омелянский, 1913).

При недостатке фосфора в почве обращаются к фосфоритам, которые образовались за счет скоплений костей ископаемых животных. В новейшее время начата разработка минерала апатита, содержащего фосфор. Однако, как говорит Д. И. Менделеев, нет почти ни одного каменистого вещества, составляющего массу земной коры, в состав которого не входил бы фосфор. Следовательно и здесь общий запас фосфора на Земле совершенно достаточен для развития жизни.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*