KnigaRead.com/
KnigaRead.com » Компьютеры и Интернет » Программы » Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей

Дж. Кеоун - OrCAD PSpice. Анализ электрических цепей

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Дж. Кеоун, "OrCAD PSpice. Анализ электрических цепей" бесплатно, без регистрации.
Перейти на страницу:

Обзор новых команд PSpice, применяемых в данной главе

С[имя] <+узел> <-узел> <значение>

Например, запись

С 4 5 0.5uF

показывает, что конденсатор емкостью 0,5 мкФ включен между узлами 4 и 5. При другой форме ввода в конце строки добавляется запись значения для того, чтобы ввести начальное значение напряжения на конденсаторе.

Например, запись

С 4 5 0.5uF IС 5 3V

показывает, что на конденсаторе имеется начальное напряжение в 3 В, причем положительный потенциал на узле 4.

I[имя] <+узел> <-узел> АС <амплитуда> [<фаза>]

Например, запись

IS 1 2 АС 0.35 45

указывает, что источник переменного тока 350 мА включен между узлами 1 и 2 и его начальный фазовый угол равен 45°. Помните, что значения токов и напряжений по умолчанию задаются для постоянного тока. В иных случаях это должно быть специально указано (как в нашем случае записью АС).

K[имя] L [имя] L [имя] <значение коэффициента связи>

Например,

K L1 L2 0.1

указывает, что схема с индуктивной связью, возможно, трансформатор, имеет две связанные катушки индуктивности L1 и L2. Коэффициент связи k=0,1. Другая форма этой команды, которая касается схемы с индуктивной связью на магнитном сердечнике, будет представлена позже.

L[имя] <+узел> <-узел> <значение>

Например, запись

L1 3 0 2 5mH

указывает, что катушка индуктивности 25 мГн включена между узлами 3 и 0. Чтобы показать начальный ток, используйте значение в конце строки.

V[имя] <+узел> <-узел> АС <амплитуда> [<фаза>]

Например, запись

V2 4 1 АС 110 120

указывает, что источник переменного напряжения амплитудой 110 В с фазовым углом 120 включен между узлами 4 и 1.

Команды, начинающиеся с точки, используемые в данной главе

.AC [LBS] [ОСТ] [DEC] <точки> <f start> <f end>

Например, запись

.AC DEC 2 0 1kHz 1MEG

указывает, что PSpice будет выполнять моделирование с частотой в качестве переменной. Частотный диапазон — от 1 кГц до 1 МГц — использует 20 точек на декаду. Если выбрана опция LIN (вместо опции DEC), значение числа точек представляет общее количество точек в частотном диапазоне.

.MODEL <название> <тип> [<param> = <значение>] < toI]>]

Эта команда может использоваться для модели любого из элементов, доступных в PSpice: резисторов, катушек индуктивности, конденсаторов, диодов, транзисторов (биполярных или полевых) и других устройств. Имя элемента для диода должно начинаться с D и может быть DI, D2, DA, и так далее. Тип прибора должен быть выбран из приведенных в разделе .MODEL приложения В: например, RES для резистора, IND для катушки индуктивности и D для диода.

.PRINT <[DC] [AC] [NOISE] [TRAN]> <output variable list>

Например, при использовании команды

.PRINT AC V(2) V(5,4) VP(5,4) I(R1) IP(R1)

в выходном файле, использующем показанные значения для переменного тока, будут выведены следующие величины: V(2) даст величину V2; V(5,4) даст величину V54; I(R1) будет давать величину тока через резистор R1 и IP(R1) даст угол фазы тока через R1. Обратите внимание, что должен быть выбран один (и только один) из пунктов в списке DC, AC, NOISE и TRAN.

.PROBE

Эта команда описывалась в главе 1, но здесь приводится более подробное описание. Когда Вы включаете команду .Probe во входной файл и выполняете моделирование на PSpice, наряду с файлом данных будет создан выходной файл. Выходной файл — это текстовый файл с расширением *.out, а файл данных имеет расширение *.dat. Это не текстовый файл, но он содержит информацию, необходимую программе Probe, чтобы построить желательные графики. Другой файл с расширением *.prb содержит текст, который необходимо направить в программу Probe. Программа Probe начинается автоматически, когда команда .Probe включена в схемный файл. Появившийся экран содержит главное меню со следующими пунктами:

File Edit View Simulation Trace Plot Tools Window Help

Оно сопровождается двумя строками пиктограмм, которые могут использоваться вместо меню для таких функций, как открытие файлов, печать графиков, нахождение максимальных и минимальных значений и других. 

Первое, что необходимо сделать в Probe, это выбрать Trace, Add Trace, затем выбирать переменные из списка Simulation Output Variables в столбце слева. Столбец справа содержит список Functions или Macros. Если вы получили график, который необходимо сохранить, выберите File, Print, чтобы получить, отпечатанную версию экрана. Графики, приведенные в этой книге, были получены таким способом. Любой лазерный принтер, например один из серии HP Laser Jet фирмы HEWLETT-PACKARD, может распечатать график. Менее удовлетворительные результаты могут быть получены с некоторыми струйными принтерами типа HEWLETT-PACKARD DeskJet.

Задачи

2.1. Найти эквивалентное полное сопротивление схемы, показанной на рис. 2.48 со стороны источника. Так как индуктивные и емкостные сопротивления даны в омах, используйте частоту f=5 кГц, чтобы найти значения L и С, необходимые во входном файле. Проверьте ваши результаты, с помощью стандартных методов расчета схемы.

Рис. 2.48


2.2. Схема, показанная на рис. 2.49, имеет низкую добротность. Найдите резонансную частоту с помощью частотных характеристик в диапазоне от 3 до 6 кГц. Проверьте что f0=3,56 кГц. Найдите ток при резонансе и минимальный ток. Какой частоте соответствует минимальный ток?

Рис. 2.49


2.3. Решите задачу 2.2 при значении R2=20 Ом.

2.4. В этой задаче исследуются изменения напряжения на R, L, и С вблизи резонанса. Параметры элементов показаны на рис. 2.50, f0=159,15 Гц. Сформируйте входной файл так, чтобы получить графики VR, VL и VC для частотного диапазона от 10 до 300 Гц. Покажите, что VRmax соответствует частоте f0 в то время как VLmax — ниже f0, a VCmax — выше f0.

Рис. 2.50


2.5. Для схемы, показанной на рис. 2.51, найдите полное сопротивление со стороны источника при f=1 кГц.

Рис. 2.51


2.6. Определите график изменения проводимостей для типичной схемы с двумя параллельными ветвями (рис. 2.52). Она подобна схеме, рассмотренной в примере данной главы. Проведите моделирование с использованием Probe и получите график IP(R), чтобы определить резонансную частоту. Затем получите карту проводимостей и найдите значения G и В при резонансе.

Рис. 2.52


2.7. Для схемы на рис. 2.53 найдите частоту, при которой V2=0,707 В для объяснения амплитудно-частотной характеристики (характеристики Боде) для V2/V1. Определите фазовый сдвиг при этой частоте.

Рис. 2.53 


2.8. Для схемы на рис. 2.54 найдите частоту, при которой выходное напряжение минимально, и значение напряжения при этой частоте (амплитуду и фазу). Найдите полосу частот, в которой выходное напряжение изменяется на 3 дБ или больше.

Рис. 2.54


2.9. На рис. 2.55 приведена схема с двойным резонансом. Она имеет ширину полосы пропускания в 150 кГц. Получите графики для схемы, которые подробно показывают амплитуду и фазу выходного напряжения в интересующей нас области.

Рис. 2.55. 


2.10. Для схемы на рис. 2.56 найти I1, I2 и напряжение V40 при частоте ω=1000 рад/с. Подсказка: так как значения реактивных сопротивлений не могут использоваться в PSpice непосредственно, рассчитайте значения L и С.

Рис. 2.56


2.11. Чтобы проверить ответы, полученные в задаче 2.10, найдите V20, затем используйте напряжение на L, чтобы найти ток i2. Сравните эти значения с результатами, полученными при решении задачи 2.10.

2.12. Для схемы, показанной на рис. 2.57, найдите i и V2. Преобразуйте источники тока в источники напряжения и проверьте ваши результаты с помощью ручного расчета.

Рис. 2.57


2.13. На рис. 2.58 показана схема индикатора последовательности фаз. R1 и R2 — сопротивления идентичных ламп накаливания. Даны значения: частота f=60 Гц, V12=100∠0° В и V23=100∠–120° В. Покажите с помощью анализа на PSpice, что последовательность фаз (которая, очевидно, является прямой ABC) может быть определена по относительной яркости ламп R1 и R2.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*