Bert Hubert - Linux Advanced Routing & Traffic Control HOWTO
tc filter add dev eth0 parent 1:0 protocol ip prio 6 handle 6 fw classid 1:15
Здесь задаются соответствия между специфическими значениями FWMARK (handle x fw) и классами (classid x:x). Теперь рассмотрим процесс установки меток на пакеты.
Для начала необходимо разобраться с тем, как движутся пакеты через iptables:
+------------+ принятие +---------+ +-------------+
Вход ---| PREROUTING |--- решения о --| FORWARD |-------+-------| POSTROUTING |- Выход
+------------+ маршрутизации +---------+ | +-------------+
| |
+-------+ +--------+
| INPUT |-Локальные процессы-| OUTPUT |
+-------+ +--------+
Далее я буду исходить из предположения, что всем таблицам назначена политика по-умолчанию -P ACCEPT. Наша локальная сеть относится к классу b, с адресами 172.17.0.0/16. Реальный IP-адрес — 212.170.21.172
Добавим правило iptables, которое будет выполнять snat, что позволит пользователям локальной сети общаться с внешним миром, и разрешим форвардинг пакетов:
echo 1 > /proc/sys/net/ipv4/ip_forward
iptables –t nat –A POSTROUTING –s 172.17.0.0/255.255.0.0 –o eth0 –j SNAT –to-source 212.170.21.172
Проверим, что пакеты уходят через класс 1:15:
tc –s class show dev eth0
Добавим в цепочку PREROUTING, таблицы mangle, правила для установки меток на пакеты:
iptables –t mangle –A PREROUTING –p icmp –j MARK –set-mark 0x1
iptables –t mangle –A PREROUTING –p icmp –j RETURN
Теперь вы должны наблюдать увеличение значения счетчика пакетов в классе 1:10, при попытке ping-ануть из локальной сети какой-нибудь сайт в Интернете.
tc-s класс показывают dev eth0
Действие -j RETURN предотвращает движение пакетов по всем правилам. Поэтому все ICMP-пакеты будут проходить только это правило. Добавим еще ряд правил, которые будут изменять биты в поле TOS:
iptables –t mangle –A PREROUTING –m tos –tos Minimize-Delay –j MARK –set-mark 0x1
iptables –t mangle –A PREROUTING –m tos –tos Minimize-Delay –j RETURN
iptables –t mangle –A PREROUTING –m tos –tos Minimize-Cost –j MARK –set-mark 0x5
iptables –t mangle –A PREROUTING –m tos –tos Minimize-Cost –j RETURN
iptables –t mangle –A PREROUTING –m tos –tos Maximize-Throughput –j MARK –set-mark 0x6
iptables –t mangle –A PREROUTING –m tos –tos Maximize-Throughput –j RETURN
Поднимем приоритет для ssh-пакетов:
iptables –t mangle –A PREROUTING –p tcp –m tcp –sport 22 –j MARK –set-mark 0x1
iptables –t mangle –A PREROUTING –p tcp –m tcp –sport 22 –j RETURN
а так же для пакетов, с которых начинается TCP-соединение, т.е. SYN-пакетов:
iptables –t mangle –I PREROUTING –p tcp –m tcp –tcp-flags SYN,RST,ACK SYN –j MARK –set-mark 0x1
iptables –t mangle –I PREROUTING –p tcp –m tcp –tcp-flags SYN,RST,ACK SYN –j RETURN
И так далее. После того, как в цепочку PREROUTING, таблицы mangle, будут внесены все необходимые правила, закончим ее правилом:
iptables –t mangle –A PREROUTING –j MARK –set-mark 0x6
Это заключительное правило отправит оставшиеся немаркированные пакеты в класс 1:15. Фактически, это правило можно опустить, так как класс 1:15 был задан по-умолчанию, но тем не менее, я оставляю его, чтобы сохранить единство настроек и кроме того, иногда бывает полезно увидеть счетчик пакетов для этого правила.
Нелишним будет добавить те же правила в цепочку OUTPUT, заменив имя цепочки PREROUTING на OUTPUT (s/PREROUTING/OUTPUT/). Тогда трафик, сгенерированный локальными процессами на маршрутизаторе, также будет классифицирован по категориям. Но, в отличие от вышеприведенных правил, в цепочке OUTPUT, я устанавливаю метку -j MARK –set-mark 0x3, таким образом трафик от маршрутизатора получает более высокий приоритет.
15.10.3. Дополнительная оптимизация
В результате приведенных настроек, мы получили вполне работоспособную конфигурацию. Однако, в каждом конкретном случае, эти настройки всегда можно немного улучшить. Найдите время и проследите – куда идет основной трафик и как лучше им распорядиться. Я потратил огромное количество времени и наконец довел свою конфигурацию до оптимального уровня, практически сведя на нет бесчисленные таймауты.
Если вдруг обнаружится, что через некоторые классы проходит подавляющее большинство трафика, то к ним можно прикрепить другую дисциплину организации очереди, чтобы распределить канал более равномерно:
tc qdisc add dev eth0 parent 1:13 handle 130: sfq perturb 10
tc qdisc add dev eth0 parent 1:14 handle 140: sfq perturb 10
tc qdisc add dev eth0 parent 1:15 handle 150: sfq perturb 10
15.10.4. Выполнение настроек во время загрузки системы.
Уверен, что можно найти множество способов, чтобы произвести настройку маршрутизатора во время загрузки. Для себя я создал скрипт /etc/init.d/packetfilter, который принимает команды [start | stop | stop-tables | start-tables | reload-tables]. Он конфигурирует дисциплины (qdiscs) и загружает необходимые модули ядра. Этот же сценарий загружает правила iptables из файла /etc/network/iptables-rules, которые предварительно могут быть сохранены утилитой iptables-save и восстановлены — iptables-restore.
Глава 16. Построение мостов и псевдо-мостов с proxy arp.
Мосты (bridges) — это специальные устройства, которые могут быть установлены в сети и не требуют предварительной настройки. Сетевой коммутатор (switch) — это особый вид многопортового моста. Мост — это чаще всего двухпортовый коммутатор (switch). На базе Linux может быть построен многопортовый (несколько интерфейсов) мост, по сути — настоящий коммутатор (switch).
Мосты часто применяются для объединения фрагментированных стационарных сетей. Поскольку мост — это устройство 2-го уровня (Канальный уровень по классификации OCI), который лежит ниже сетевого уровня, где "заправляют" протоколы IP, то ни серверы, ни маршрутизаторы даже не подозревают о его существовании. Это означает, что вы можете блокировать или изменять некоторые пакеты, а так же формировать трафик по своему усмотрению.
Еще одно замечательное свойство моста — в случае выхода из строя, мост может быть заменен отрезком кабеля или сетевым концентратором (hub — хабом).
Одна из отрицательных сторон — мост может стать причиной большой неразберихи. traceroute его не "видит" и не сможет указать в каком месте теряются пакеты. Так что ничего удивительного, если какая-нибудь организация считает правильным "ничего не менять".
Мосты на базе Linux 2.4/2.5 подробно описаны на сайте http://bridge.sourceforge.net/.
16.1. Бриджинг и iptables.
Что касается Linux 2.4.20, то бриджинг и iptables не "видят" друг друга без установки вспомогательных модулей. Если построен мост между eth0 и eth1, то пакеты, передаваемые по мосту, проходят мимо iptables. Это означает, что ни фильтрация, ни nat, ни возможность внесения изменений в заголовки пакетов (mangling) вам недоступны. Начиная с Linux 2.5.45 это было исправлено.
Хочу упомянуть еще об одном проекте — etables. Он позволяет вытворять такие штуки, как MACNAT и brouting. Это действительно круто!
16.2. Бриджинг и шейпинг.
Принцип работы соответствует заголовку. Вы должны убедиться, что четко представляете — с какой стороны подключен каждый из интерфейсов, иначе может получиться так, что будет производиться попытка формирования экспортируемого трафика на внутреннем интерфейсе. Если необходимо — используйте утилиту tcpdump.
16.3. Псевдо-мосты с проксированием ARP.
Если вы просто хотите построить псевдо-мост, то можете сразу перейти к разделу Реализация, однако мы рекомендуем все-таки прочитать о том как все это работает на практике.
По-умолчанию, обычный мост просто передает пакеты с одного интерфейса на другой в неизменном виде. Он рассматривает только аппаратный адрес пакета, чтобы определить — в каком направлении нужно передать пакет. Это означает, что Linux может переправлять любой вид трафика, даже тот, который ему не известен, если пакеты имеют аппаратный адрес.
Псевдо-мост работает несколько иначе и скорее больше походит на скрытый маршрутизатор, чем на мост, но подобно мосту имеет некоторое влияние на архитектуру сети.
Правда это не совсем мост, поскольку пакеты в действительности проходят через ядро и могут быть отфильтрованы, изменены, перенаправлены или направлены по другому маршруту.
Настоящий мост в принципе тоже может делать это, но для этого требуется специальное программное обеспечение, например: Ethernet Frame Diverter.
Еще одно преимущество псевдо-моста состоит в том, что он не может передавать пакеты протоколов, которые "не понимает" — что предохраняет сеть от заполнения всяким "мусором". В случае, если вам необходимо переправлять такие пакеты (например, пакеты SAP или Netbeui), то устанавливайте настоящий мост.
16.3.1. ARP и проксирование ARP