Морис Бах - Архитектура операционной системы UNIX
В первой версии системы UNIX, разработанной Томпсоном и Ричи, отсутствовал внутренний механизм, с помощью которого процессу мог бы быть обеспечен исключительный доступ к файлу. Механизм захвата был признан излишним, поскольку, как отмечает Ричи, «мы не имеем дела с большими базами данных, состоящими из одного файла, которые поддерживаются независимыми процессами» (см. [Ritchie 81]). Для того, чтобы повысить привлекательность системы UNIX для коммерческих пользователей, работающих с базами данных, в версию V системы ныне включены механизмы захвата файла и записи. Захват файла — это средство, позволяющее запретить другим процессам производить чтение или запись любой части файла, а захват записи — это средство, позволяющее запретить другим процессам производить ввод-вывод указанных записей (частей файла между указанными смещениями). В упражнении 5.9 рассматривается реализация механизма захвата файла и записи.
5.5 УКАЗАНИЕ МЕСТА В ФАЙЛЕ, ГДЕ БУДЕТ ВЫПОЛНЯТЬСЯ ВВОД-ВЫВОД — LSEEК
Обычное использование системных функций read и write обеспечивает последовательный доступ к файлу, однако процессы могут использовать вызов системной функции lseek для указания места в файле, где будет производиться ввод-вывод, и осуществления произвольного доступа к файлу. Синтаксис вызова системной функции:
position = lseek(fd, offset, reference);
где fd — дескриптор файла, идентифицирующий файл, offset — смещение в байтах, а reference указывает, является ли значение offset смещением от начала файла, смещением от текущей позиции ввода-вывода или смещением от конца файла. Возвращаемое значение, position, является смещением в байтах до места, где будет начинаться следующая операция чтения или записи. Например, в программе, приведенной на Рисунке 5.10, процесс открывает файл, считывает байт, а затем вызывает функцию lseek, чтобы заменить значение поля смещения в таблице файлов величиной, равной 1023 (с переменной reference, имеющей значение 1), и выполняет цикл. Таким образом, программа считывает каждый 1024-й байт файла. Если reference имеет значение 0, ядро осуществляет поиск от начала файла, а если 2, ядро ведет поиск от конца файла. Функция lseek ничего не должна делать, кроме операции поиска, которая позиционирует головку чтения-записи на указанный дисковый сектор. Для того, чтобы выполнить функцию lseek, ядро просто выбирает значение смещения из таблицы файлов; в последующих вызовах функций read и write смещение из таблицы файлов используется в качестве начального смещения.
#include ‹fcntl.h›
main(argc, argv)
int argc; char *argv[];
{
int fd, skval;
char c;
if (argc != 2) exit();
fd = open(argv[1], O_RDONLY);
if (fd == -1) exit();
while ((skval = read(fd, &c,1 )) == 1) {
printf("char %cn", c);
skval = lseek(fd, 1023L, 1);
printf("new seek val %dn", skval);
}
}
Рисунок 5.10. Программа, содержащая вызов системной функции lseek
5.6 CLOSЕ
Процесс закрывает открытый файл, когда процессу больше не нужно обращаться к нему. Синтаксис вызова системной функции close (закрыть):
close(fd);
где fd — дескриптор открытого файла. Ядро выполняет операцию закрытия, используя дескриптор файла и информацию из соответствующих записей в таблице файлов и таблице индексов. Если счетчик ссылок в записи таблицы файлов имеет значение, большее, чем 1, в связи с тем, что были обращения к функциям dup или fork, то это означает, что на запись в таблице файлов делают ссылку другие пользовательские дескрипторы, что мы увидим далее; ядро уменьшает значение счетчика и операция закрытия завершается. Если счетчик ссылок в таблице файлов имеет значение, равное 1, ядро освобождает запись в таблице и индекс в памяти, ранее выделенный системной функцией open (алгоритм iput). Если другие процессы все еще ссылаются на индекс, ядро уменьшает значение счетчика ссылок на индекс, но оставляет индекс процессам; в противном случае индекс освобождается для переназначения, так как его счетчик ссылок содержит 0. Когда выполнение системной функции close завершается, запись в таблице пользовательских дескрипторов файла становится пустой. Попытки процесса использовать данный дескриптор заканчиваются ошибкой до тех пор, пока дескриптор не будет переназначен другому файлу в результате выполнения другой системной функции. Когда процесс завершается, ядро проверяет наличие активных пользовательских дескрипторов файла, принадлежавших процессу, и закрывает каждый из них. Таким образом, ни один процесс не может оставить файл открытым после своего завершения.
На Рисунке 5.11, например, показаны записи из таблиц, приведенных на Рисунке 5.4, после того, как второй процесс закрывает соответствующие им файлы. Записи, соответствующие дескрипторам 3 и 4 в таблице пользовательских дескрипторов файлов, пусты. Счетчики в записях таблицы файлов теперь имеют значение 0, а сами записи пусты. Счетчики ссылок на файлы «/etc/passwd» и «private» в индексах также уменьшились. Индекс для файла «private» находится в списке свободных индексов, поскольку счетчик ссылок на него равен 0, но запись о нем не пуста. Если еще какой-нибудь процесс обратится к файлу «private», пока индекс еще находится в списке свободных индексов, ядро востребует индекс обратно, как показано в разделе 4.1.2.
Рисунок 5.11. Таблицы после закрытия файла
5.7 СОЗДАНИЕ ФАЙЛА
Системная функция open дает процессу доступ к существующему файлу, а системная функция creat создает в системе новый файл. Синтаксис вызова системной функции creat:
fd = creat(pathname, modes);
где переменные pathname, modes и fd имеют тот же смысл, что и в системной функции open. Если прежде такого файла не существовало, ядро создает новый файл с указанным именем и указанными правами доступа к нему; если же такой файл уже существовал, ядро усекает файл (освобождает все существующие блоки данных и устанавливает размер файла равным 0) при наличии соответствующих прав доступа к нему[16]. На Рисунке 5.12 приведен алгоритм создания файла.
алгоритм creat
входная информация:
имя файла
установки прав доступа к файлу
выходная информация: дескриптор файла
{
получить индекс для данного имени файла (алгоритм namei);
if (файл уже существует) {
if (доступ не разрешен) {
освободить индекс (алгоритм iput);
return (ошибку);
}
}
else { /* файл еще не существует */
назначить свободный индекс из файловой системы (алгоритм ialloc);
создать новую точку входа в родительском каталоге;
включить имя нового файла и номер вновь назначенного индекса;
}
выделить для индекса запись в таблице файлов, инициализировать счетчик;
if (файл существовал к моменту создания) освободить все блоки файла (алгоритм free);
снять блокировку (с индекса);
return (пользовательский дескриптор файла);
}
Рисунок 5.12. Алгоритм создания файла
Ядро проводит синтаксический анализ имени пути поиска, используя алгоритм namei и следуя этому алгоритму буквально, когда речь идет о разборе имен каталогов. Однако, когда дело касается последней компоненты имени пути поиска, а именно идентификатора создаваемого файла, namei отмечает смещение в байтах до первой пустой позиции в каталоге и запоминает это смещение в пространстве процесса. Если ядро не обнаружило в каталоге компоненту имени пути поиска, оно в конечном счете впишет имя компоненты в только что найденную пустую позицию. Если в каталоге нет пустых позиций, ядро запоминает смещение до конца каталога и создает новую позицию там. Оно также запоминает в пространстве процесса индекс просматриваемого каталога и держит индекс заблокированным; каталог становится по отношению к новому файлу родительским каталогом. Ядро не записывает пока имя нового файла в каталог, так что в случае возникновения ошибок ядру приходится меньше переделывать. Оно проверяет наличие у процесса разрешения на запись в каталог. Поскольку процесс будет производить запись в каталог в результате выполнения функции creat, наличие разрешения на запись в каталог означает, что процессам дозволяется создавать файлы в каталоге.
Предположив, что под данным именем ранее не существовало файла, ядро назначает новому файлу индекс, используя алгоритм ialloc (раздел 4.6). Затем оно записывает имя нового файла и номер вновь выделенного индекса в родительский каталог, а смещение в байтах сохраняет в пространстве процесса. Впоследствии ядро освобождает индекс родительского каталога, удерживаемый с того времени, когда в каталоге производился поиск имени файла. Родительский каталог теперь содержит имя нового файла и его индекс. Ядро записывает вновь выделенный индекс на диск (алгоритм bwrite), прежде чем записать на диск каталог с новым именем. Если между операциями записи индекса и каталога произойдет сбой системы, в итоге окажется, что выделен индекс, на который не ссылается ни одно из имен путей поиска в системе, однако система будет функционировать нормально. Если, с другой стороны, каталог был записан раньше вновь выделенного индекса и сбой системы произошел между ними, файловая система будет содержать имя пути поиска, ссылающееся на неверный индекс (более подробно об этом см. в разделе 5.16.1).