KnigaRead.com/
KnigaRead.com » Компьютеры и Интернет » Программное обеспечение » Морис Бах - Архитектура операционной системы UNIX

Морис Бах - Архитектура операционной системы UNIX

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Морис Бах, "Архитектура операционной системы UNIX" бесплатно, без регистрации.
Перейти на страницу:

Рисунок 4.9. Размещение блоков в файле и его индексе


При ближайшем рассмотрении Рисунка 4.9 обнаруживается, что несколько входов для блока в индексе имеют значение 0 и это значит, что в данных записях информация о логических блоках отсутствует. Такое имеет место, если в соответствующие блоки файла никогда не записывалась информация и по этой причине у номеров блоков остались их первоначальные нулевые значения. Для таких блоков пространство на диске не выделяется. Подобное расположение блоков в файле вызывается процессами, запускающими системные операции lseek и write (см. следующую главу). В следующей главе также объясняется, каким образом ядро обрабатывает системные вызовы операции read, с помощью которой производится обращение к блокам.

Преобразование адресов с большими смещениями, в частности с использованием блоков тройной косвенной адресации, является сложной процедурой, требующей от ядра обращения уже к трем дисковым блокам в дополнение к индексу и информационному блоку. Даже если ядро обнаружит блоки в буферном кеше, операция останется дорогостоящей, так как ядру придется многократно обращаться к буферному кешу и приостанавливать свою работу в ожидании снятия блокировки с буферов. Насколько эффективен этот алгоритм на практике? Это зависит от того, как используется система, а также от того, кто является пользователем и каков состав задач, вызывающий потребность в более частом обращении к большим или, наоборот, маленьким файлам. Однако, как уже было замечено [Mullender 84], большинство файлов в системе UNIX имеет размер, не превышающий 10 Кбайт и даже 1 Кбайта![11] Поскольку 10 Кбайт файла располагаются в блоках прямой адресации, к большей части данных, хранящихся в файлах, доступ может производиться за одно обращение к диску. Поэтому в отличие от обращения к большим файлам, работа с файлами стандартного размера протекает быстро.

В двух модификациях только что описанной структуры индекса предпринимается попытка использовать размерные характеристики файла. Основной принцип в реализации файловой системы BSD 4.2 [McKusick 84] состоит в том, что чем больше объем данных, к которым ядро может получить доступ за одно обращение к диску, тем быстрее протекает работа с файлом. Это свидетельствует в пользу увеличения размера логического блока на диске, поэтому в системе BSD разрешается иметь логические блоки размером 4 или 8 Кбайт. Однако, увеличение размера блоков на диске приводит к увеличению фрагментации блоков, при которой значительные участки дискового пространства остаются неиспользуемыми. Например, если размер логического блока 8 Кбайт, тогда файл размером 12 Кбайт занимает 1 полный блок и половину второго блока. Другая половина второго блока (4 Кбайта) фактически теряется; другие файлы не могут использовать ее для хранения данных. Если размеры файлов таковы, что число байт, попавших в последний блок, является равномерно распределенной величиной, то средние потери дискового пространства составляют полблока на каждый файл; объем теряемого дискового пространства достигает в файловой системе с логическими блоками размером 4 Кбайта 45% [McKusick 84]. Выход из этой ситуации в системе BSD состоит в выделении только части блока (фрагмента) для размещения оставшейся информации файла. Один дисковый блок может включать в себя фрагменты, принадлежащие нескольким файлам. Некоторые подробности этой реализации исследуются на примере упражнения в главе 5.

Второй модификацией рассмотренной классической структуры индекса является идея хранения в индексе информации файла (см. [Mullender 84]). Если увеличить размер индекса так, чтобы индекс занимал весь дисковый блок, небольшая часть блока может быть использована для собственно индексных структур, а оставшаяся часть — для хранения конца файла и даже во многих случаях для хранения файла целиком. Основное преимущество такого подхода заключается в том, что необходимо только одно обращение к диску для считывания индекса и всей информации, если файл помещается в индексном блоке.

4.3 КАТАЛОГИ

Из главы 1 напомним, что каталоги являются файлами, из которых строится иерархическая структура файловой системы; они играют важную роль в превращении имени файла в номер индекса. Каталог — это файл, содержимым которого является набор записей, состоящих из номера индекса и имени файла, включенного в каталог. Составное имя — это строка символов, завершающаяся пустым символом и разделяемая наклонной чертой («/») на несколько компонент. Каждая компонента, кроме последней, должна быть именем каталога, но последняя компонента может быть именем файла, не являющегося каталогом. В версии V системы UNIX длина каждой компоненты ограничивается 14 символами; таким образом, вместе с 2 байтами, отводимыми на номер индекса, размер записи каталога составляет 16 байт.


Смещение в байтах внутри каталога Номер индекса (2 байта) Имя файла

0 83 . 16 2 .. 32 1798 init 48 1276 fsck 64 85 clri 80 1268 motd 96 1799 mount 112 88 mknod 128 2114 passwd 144 1717 umount 160 1851 checklist 176 92 fsdbld 192 84 config 208 1432 getty 224 0 crash 240 95 mkfs 256 188 inittab

Рисунок 4.10. Формат каталога /etc


На Рисунке 4.10 показан формат каталога «etc». В каждом каталоге имеются файлы, в качестве имен которых указаны точка и две точки ("." и «..») и номера индексов у которых совпадают с номерами индексов данного каталога и родительского каталога, соответственно. Номер индекса для файла "." в каталоге «/etc» имеет адрес со смещением 0 и значение 83. Номер индекса для файла «..» имеет адрес со смещением 16 от начала каталога и значение 2. Записи в каталоге могут быть пустыми, при этом номер индекса равен 0. Например, запись с адресом 224 в каталоге «/etc» пустая, несмотря на то, что она когда-то содержала точку входа для файла с именем «crash». Программа mkfs инициализирует файловую систему таким образом, что номера индексов для файлов "." и «..» в корневом каталоге совпадают с номером корневого индекса файловой системы.

Ядро хранит данные в каталоге так же, как оно это делает в файле обычного типа, используя индексную структуру и блоки с уровнями прямой и косвенной адресации. Процессы могут читать данные из каталогов таким же образом, как они читают обычные файлы, однако исключительное право записи в каталог резервируется ядром, благодаря чему обеспечивается правильность структуры каталога. Права доступа к каталогу имеют следующий смысл: право чтения дает процессам возможность читать данные из каталога; право записи позволяет процессу создавать новые записи в каталоге или удалять старые (с помощью системных операций creat, mknod, link и unlink), в результате чего изменяется содержимое каталога; право исполнения позволяет процессу производить поиск в каталоге по имени файла (поскольку «исполнять» каталог бессмысленно). На примере Упражнения 4.6 показана разница между чтением и поиском в каталоге.

4.4 ПРЕВРАЩЕНИЕ СОСТАВНОГО ИМЕНИ ФАЙЛА (ПУТИ ПОИСКА) В ИДЕНТИФИКАТОР ИНДЕКСА

Начальное обращение к файлу производится по его составному имени (имени пути поиска), как в командах open, chdir (изменить каталог) или link. Поскольку внутри системы ядро работает с индексами, а не с именами путей поиска, оно преобразует имена путей поиска в идентификаторы индексов, чтобы производить доступ к файлам. Алгоритм namei производит поэлементный анализ составного имени, ставя в соответствие каждой компоненте имени индекс и каталог и в конце концов возвращая идентификатор индекса для введенного имени пути поиска (Рисунок 4.11).

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*