KnigaRead.com/

Bert Hubert - Linux Advanced Routing & Traffic Control HOWTO

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Bert Hubert, "Linux Advanced Routing & Traffic Control HOWTO" бесплатно, без регистрации.
Перейти на страницу:

Глава 11. netfilter и iproute – маркировка пакетов.

До сих пор мы детально разбирались с работой iproute и лишь вскользь упомянули netfilter. Теперь настало самое время поговорить о нем. Для начала рекомендую вам прочитать Remarkably Unreliable Guides.

Netfilter позволяет выполнять фильтрацию трафика и вносить изменения в заголовки пакетов. Одна из замечательных особенностей netfilter — это возможность устанавливать числовые метки на пакеты.

Например, следующее правило пометит все пакеты, отправляемые на порт 25:

# iptables –A PREROUTING –i eth0 –t mangle –p tcp –dport 25

 –j MARK –set-mark 1

Допустим, что у нас имеется два подключения к Интернет — одно быстрое, но дорогое, другое медленное, зато дешевое. Естественно, что мы предпочтем отправлять почту по дешевому маршруту. Командой выше, мы уже пометили все пакеты исходящей почты числовой меткой — 1, теперь попробуем направить эти пакеты по дешевому маршруту:

# echo 201 mail.out >> /etc/iproute2/rt_tables

# ip rule add fwmark 1 table mail.out

# ip rule ls

0:     from all lookup local

32764: from all fwmark 1 lookup mail.out

32766: from all lookup main

32767: from all lookup default

и зададим пусть и медленный, зато недорогой маршрут в таблице mail.out:

# /sbin/ip route add default via 195.96.98.253 dev ppp0 table mail.out

Это собственно все, что нам пришлось сделать! Если нужно сделать исключения для отдельных хостов, то можно несколько модифицировать набор правил для netfilter, пропуская пакеты с отдельных хостов без метки, или можно добавить правило с более низким приоритетом, которое отправляет отдельные хосты через таблицу main.

Можно так же использовать поле TOS, в заголовке пакета, задавая различный тип обслуживания для трафика различного рода, и создавая правила, которые реагируют на это поле.

Само собой разумеется, все это прекрасно работает и на хостах, под NAT ('masquerading').

Warning

Некоторые наши читатели отмечают, что как минимум MASQ и SNAT конфликтуют с механизмом маркировки пакетов. Расти Рассел (Rusty Russell) описал эту проблему (http://lists.samba.org/pipermail/netfilter/2000-November/006089.html). Просто, отключите фильтр проверки обратного адреса (см. главу Параметры настройки сети в ядре) и все должно заработать. 

Note

Чтобы иметь возможность маркировать пакеты, вы должны собрать ядро с рядом включенных опций: I

IP: advanced router (CONFIG_IP_ADVANCED_ROUTER) [Y/n/?]

IP: policy routing (CONFIG_IP_MULTIPLE_TABLES) [Y/n/?]

IP: use netfilter MARK value as routing key (CONFIG_IP_ROUTE_FWMARK) [Y/n/?]

См. так же раздел Прозрачное проксирование с помощью netfilter, iproute2, ipchains и squid.

Глава 12. Расширенная фильтрация.

Как уже говорилось в разделе Классовые дисциплины обработки очередей, для того, чтобы определить в какую из подочередей направить пакет, используются фильтры-классификаторы.

Ниже приводится неполный список доступных классификаторов:

fw

Решение принимается на основе маркера пакета, установленного брандмауэром (например — iptables). Наиболее простой классификатор, который можно рекомендовать в том случае, если вам не хочется изучать синтаксис tc. За дополнительной информацией обращайтесь к главе 9.

u32

Решение принимается на основе значений полей в заголовке пакета (например, исходящий IP-адрес и т.п.).

route

Решение принимается на основе маршрута, по которому движется пакет.

rsvp, rsvp6

Маршрутизация пакетов производится на базе RSVP. Применимо только в том случае, если управление сетью полностью находится в ваших руках. В Интернет RSVP не поддерживается.

tcindex

Используется в DSMARK qdisc, см. соответствующий раздел.

Вообще есть множество способов классификации пакетов, но практически все они находятся в прямой зависимости от предпочитаемой вами системы.

Классификаторы, как правило, принимают некоторое количество аргументов. Перечислим их здесь, для удобства.

protocol

Протокол, принимаемый классификатором. Как правило вы будете принимать только IP-трафик.

parent

Существующий класс, к которому должен быть присоединен данный классификатор.

prio

Приоритет классификатора. Чем меньше число — тем выше приоритет.

handle

Назначение и смысл аргумента зависит от контекста использования.

Во всех следующих разделах мы будем исходить из условия, что формируется трафик, идущий к хосту HostA, что корневой класс сконфигурирован как 1:, а класс, которому посылается выбранный трафик – как 1:1.

12.1. Классификатор u32.

Фильтр U32 наиболее гибкий из доступных в текущей конфигурации. Он целиком основан на хеш-таблицах, которые повышают устойчивость фильтра при значительном количестве правил фильтрации.

В простейшем виде, фильтр U32 — это набор записей, каждая из которых состоит из двух полей: селектора и действия. Селекторы, описанные ниже, проверяют обрабатываемый IP-пакет до тех пор, пока не будет встречено первое совпадение, после чего выполняется соответствующее селектору действие. Самый простой тип действия — перенаправление пакета в определенный класс.

Для конфигурирования фильтра используется команда tc filter, состоящая из трех частей: определение фильтра, селектор и действие. Определение фильтра может быть записано как:

tc filter add dev IF [ protocol PROTO ]

                     [ (preference|priority) PRIO ]

                     [ parent CBQ ]

Поле protocol описывает обслуживаемый протокол. Здесь мы будем обсуждать исключительно протокол IP. Поле preference (в качестве синонима можно использовать priority) описывает приоритет определяемого фильтра, что позволяет задавать несколько фильтров (списков правил) с различными приоритетами. Вообще, правила обслуживаются в порядке добавления в список, в случае с приоритетами — первыми обслуживаются правила, имеющие наивысший приоритет (чем меньше число, тем выше приоритет). Поле parent определяет вершину дерева CBQ (например 10:1), к которой должен быть присоединен данный фильтр.

Описаные выше опции применимы ко всем фильтрам, а не только к U32.

12.1.1. Селектор u32.

Селектор U32 содержит определение шаблона, который будет сопоставляться с обрабатываемым пакетом. Если быть более точным, он определяет — какие биты в заголовке пакета будут проверяться и не более того, но, не смотря на свою простоту, это очень мощный и гибкий метод. Рассмотрим примеры, взятые из реально работающего и достаточно сложного фильтра:

# tc filter add dev eth0 protocol ip parent 1:0 pref 10 u32

 match u32 00100000 00ff0000 at 0 flowid 1:10

Оставим пока первую строку в покое, эти параметры описывают хеш-таблицы фильтра, и сконцентрируем свое внимание на строке селектора, которая содержит ключевое слово match. Этот селектор будет отбирать пакеты, в IP-заголовках которых второй байт будет содержать число 0x10 (0010). Как вы уже наверняка догадались, 00ff — это маска, которая точно определяет проверяемые биты. Ключевое слово at означает, что поиск совпадения должен начинаться с указанного смещения (в байтах), в данном случае — с начала пакета. Переведя все это, на человеческий язык, можно сказать, что пакет будет соответствовать селектору, если в его поле TOS (Type of Service) будет установлен бит Minimize-Delay (минимальная задержка). Проанализируем еще одно правило:

# tc filter add dev eth0 protocol ip parent 1:0 pref 10 u32

 match u32 00000016 0000ffff at nexthdr+0 flowid 1:10

Параметр nexthdr означает переход к следующему заголовку в IP-пакете, т.е. к заголовку протокола более высокого уровня. Опять же, в данной ситуации поиск будет вестись с начала заголовка. Анализу будет подвергнуто второе 32-х битное слово в заголовке. В протоколах TCP и UDP это поле содержит порт назначения. Число записывается в формате big-endian, т.е. первым указывается старший байт. Таким образом мы получаем номер порта назначения — 0x0016, или 22 (в десятичной форме). В случае протокола TCP, этот порт соответствует службе SSH. Надеюсь вы понимаете, что данное соответствие бессмысленно обсуждать вне контекста применения, поэтому отложим эту дискуссию на более позднее время.

Уловив все, что говорилось выше, вы без труда поймете смысл следующего селектора: match c0a80100 ffffff00 at 16. Данный селектор будет пытаться найти 3-х байтовую последовательность в IP-заголовке, начиная с 17-го байта, отсчитываемого от начала заголовка, что соответствует любому адресу назначения в сети 192.168.1.0/24.

12.1.2. Селекторы общего назначения.

Селекторы общего назначения задают шаблон, маску и смещение. Используя эти селекторы вы сможете выполнять проверку практически любого, отдельно взятого бита в заголовке IP (или протокола более высокого уровня). При написании и чтении они более сложны, чем селекторы специального назначения, которые будут обсуждаться в следующем разделе. Синтаксис селекторов общего назначения:

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*