KnigaRead.com/

Олег Цилюрик - QNX/UNIX: Анатомия параллелизма

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Олег Цилюрик, "QNX/UNIX: Анатомия параллелизма" бесплатно, без регистрации.
Перейти на страницу:

 return NULL;

}


int main(int argc, char *argv[]) {

 // здесь только обработка многочисленных ключей...

 int opt, val, nthr = 1, nall = SHRT_MAX;

 while ((opt = getopt(argc, argv, "t:n:p:a:")) != -1) {

  switch(opt) {

  case 't':

   if (sscanf(optarg, "%i", &val) != 1)

    perror("parse command line failed"), exit(EXIT_FAILURE);

   if (val > 0 && val <= SHRT_MAX) nthr = val;

   break;

  case 'p':

   if (sscanf(optarg, "%i", &val) != 1)

    perror("parse command line failed"), exit(EXIT_FAILURE);

   if (val != getprio(0))

    if (setprio(0, val) == -1)

     perror("priority isn't a valid"), exit(EXIT_FAILURE);

   break;

  case 'n':

   if (sscanf(optarg, "%i", &val) != 1)

    perror("parse command line failed"), exit(EXIT_FAILURE);

   if (val > 0) nsingl *= val;

   break;

  case 'a':

   if (sscanf(optarg, "%i", &val) != 1)

    perror("parse command line failed"), exit(EXIT_FAILURE);

   if (val > 0) nall = val;

   break;

  default:

   exit(EXIT_FAILURE);

  }

 }

 // ... вот здесь начинается собственно сама программа.

 if (nthr > 1)

  cout << "Multi-thread evaluation, thread number = " << nthr;

 else cout << "Single-thread evaluation";

 cout << " , priority level: " << getprio(0) << endl;

 __clockperiod clcout;

 ClockPeriod(CLOCK_REALTIME, NULL, &clcout, 0);

 // интервал диспетчеризации - 4 периода tickslice

 // (системного тика):

 cout << "rescheduling = t"

  << clcout.nsec * 4 / 1000000. << endl;

 // калибровка времени выполнения в одном потоке

 const int NCALIBR = 512;

 uint64_t tmin = 0, tmax = 0;

 tmin = ClockCycles();

 workproc(NCALIBR);

 tmax = ClockCycles();

 cout << "calculating = t"

  << cycle2milisec(tmax - tmin) / NCALIBR << endl;

 // а теперь контроль времени многих потоков

 if (pthread_barrier_init(&bstart, NULL, nthr) != EOK)

  perror("barrier init"), exit(EXIT_FAILURE);

 if (pthread_barrier_init(&bfinish, NULL, nthr + 1) != EOK)

  perror("barrier init"), exit(EXIT_FAILURE);

 trtime = new interv[nthr];

 int cur = 0, prev = 0;

 for (int i = 0; i < nthr; i++) {

  // границы участков работы для каждого потока.

  cur = (int)floor((double)nall / (double)nthr * (i + 1) + .5);

  prev = (int)floor((double)nall / (double)nthr * i + 5);

  if (pthread_create(NULL, NULL, threadfunc, (void*)(cur - prev)) != EOK)

   perror("thread create"), exit(EXIT_FAILURE);

 }

 pthread_barrier_wait(&bfinish);

 for (int i=0; i < nthr; i++ ) {

  tmin = (i == 0) ? trtime[0].s : __min(tmin, trtime[i].s);

  tmax = ( i == 0 ) ? trtime[0].f : __max(tmax, trtime[i].f);

 }

 cout << "evaluation = t"

  << cycle2milisec(tmax - tmin) / nall << endl;

 pthread_barrier_destroy(&bstart);

 pthread_barrier_destroy(&bfinish);

 delete trtime;

 exit(EXIT_SUCCESS);

}

Логика этого приложения крайне проста:

• Есть некоторая продолжительная по времени рабочая функция (workproc), выполняющая массированные вычисления.

• Многократно (это число определяется ключом запуска а) выполняется рабочая функция. Хорошо (то есть корректнее), если время ее единичного выполнения, которое задается ключом n, больше интервала диспетчеризации системы (в системе установлена диспетчеризация по умолчанию - круговая, или карусельная).

• Весь объем этой работы делится поровну (или почти поровну) между несколькими (ключ t) потоками.

• Сравниваем усредненное время единичного выполнения рабочей функции для разного числа выполняющих потоков (в выводе "calculating" — это время эталонного вычисления в одном главном потоке, a "evaluation" — время того же вычисления, но во многих потоках).

• Для того чтобы иметь еще большую гибкость, предоставляется возможность переопределять приоритет, под которым в системе все это происходит (ключ p).

Вот самая краткая сводка результатов (1-я строка вывода переносится для удобства чтения):

# t1 -n1 -t1000 -a2000

Multi-thread evaluation, thread number = 1000, priority level: 10

rescheduling = 3.99939

calculating =  1.04144

evaluation =   1.08001


# t1 -n1 -t10000 -a20000

Multi-thread evaluation, thread number = 10000, priority level: 10

rescheduling = 3.99939

calculating =  1.04378

evaluation =   1.61946


# t1 -n5 -a2000 -t1

Single-thread evaluation, priority level: 10

rescheduling = 3.99939

calculating =  5.07326

evaluation =   5.04726


# t1 -n5 -a2000 -t2

Multi-thread evaluation, thread number = 2, priority level: 10

rescheduling = 3.99939

calculating =  5.06309

evaluation =   5.04649


# t1 -n5 -a2000 -t20

Multi-thread evaluation, thread number = 20, priority level: 10

rescheduling = 3.99939

calculating =  5.06343

evaluation =   4.96956


# t1 -n5 -p51 -a512 -t1

Single-thread evaluation, priority level: 51

rescheduling = 3.99939

calculating =  4.94502

evaluation =   4.94511


# t1 -n5 -р51 -a512 -t11

Multi-thread evaluation, thread number = 11, priority level: 51

rescheduling = 3.99939

calculating =  4.94554

evaluation =   4.94549


# t1 -n5 -p51 -a512 -t111

Multi-thread evaluation, thread number = 111, priority level: 51

rescheduling = 3.99939

calculating =  5.02755

evaluation =   4.94487


# t1 -n5 -p51 -a30000 -t10000

Multi-thread evaluation, thread number = 10000, priority level: 51

rescheduling = 3.99939

calculating =  4.94575

evaluation =   5.31224

Краткий и, возможно, несколько парадоксальный итог этого теста может звучать так: при достаточно высоком уровне приоритета (выше 12–13, когда на его выполнение не влияют процессы обслуживания клавиатуры, мыши и др.) время выполнения в «классическом» последовательном коде и в многопоточном коде (где несколько тысяч потоков!) практически не различаются. Различия не более 8%, причем в обе стороны, что мы склонны считать «статистикой эксперимента». К обсуждению этого якобы противоречащего здравому смыслу феномена мы еще вернемся.

А пока посмотрим на текст примера, что и является нашей главной дачей. Обсуждаемое приложение вполне работоспособно в QNX с большой вероятностью в большинстве других UNIX-систем, но в Linux оно завершится аварийно. Причина этого кроется в операторах

int id = pthread_self() - 2;

trtime[id].s = ...

Это дает повод лишний раз обратиться к вопросу «POSIX-совместимости». POSIX описывает, что TID потока присваивается: а) в рамках процесса, которому принадлежит поток; б) начиная со значения 1, соответствующего главному потоку приложения. В Linux, выполняющем и pthread_create(), и fork() через единый системный вызов _clone() сделано небольшое «упрощение», навязанное в том числе и гонкой за повышением производительности: TID присваиваются из единого ряда PID. И сразу же «вылезает» несовместимость, ведущая к аварийному завершению показанного выше приложения. В последних редакциях ядра Linux делаются изменения по приведению механизмов параллельности к общей POSIX-модели.

Этот момент сам по себе достаточно интересен, поэтому остановимся на нем подробнее, для чего создадим простейший программный тест[22]:

#define TCNT 10


void * test(void *in) {

 printf("pid %ld, tid %ldn", getpid(), pthread_self());

 return NULL;

}


int main(int argc, char **argv, char **envp) {

 pthread_t tld[TCNT];

 int i, status;

 for (i=0; i < TCNT; i++) {

  status = pthread_create(&tid[i], NULL, test, NULL);

  if (status != 0)

  err(EXIT_FAILURE, "pthread_create()");

 }

 return(EXIT_SUCCESS);

}

Результаты выполнения этого теста в нескольких POSIX-совместимых ОС различны и весьма красноречивы:

$ uname -sr Linux 2.4.21-0.13mdk

$ ./test_pthread

pid 2008, tid 16386

pid 2009, tid 32771

pid 2010, tid 49156

pid 2011, tid 65541

pid 2012, tid 81926

pid 2013, tid 98311

pid 2014, tid 114696

pid 2015, tid 131081

pid 2016, tid 147466

pid 2017, tid 163851

А вот результат эволюции в направлении POSIX при переходе от ядра Linux 2.4.x к 2.6.x (алгоритм формирования TID все еще остается загадочным, но уже выполняются требования POSIX о выделении TID в рамках единого PID):

$ uname -sr Linux 2.6.3-7mdk

$ ./test_pthread

pid 13929, tid 1083759536

pid 13929, tid 1092156336

pid 13929, tid 1100549040

pid 13929, tid 1108941744

pid 13929, tid 1117334448

pid 13929, tid 1125727152

pid 13929, tid 1134119856

pid 13929, tid 1142512560

pid 13929, tid 1150905264

pid 13929, tid 1159297968

И наконец, тот же тест, выполненный в QNX 6.2.1:

# uname -a

QNX home 6.2.1 2003/01/08-14.50:46est х86рс x86

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*