Фрэнк Солтис - Основы AS/400
В целях безопасности бит тега не может быть одним из битов данных внутри слова, так как последние пользователь может видеть и изменять. Он должен быть скрытым, то есть храниться в недоступной пользователю области памяти, но где именно?
System/38 использует для каждого слова памяти биты кода коррекции ошибок. Содержащая их часть памяти невидима программам, работающим поверх MI. Мы решили добавить к битам кода коррекции ошибок еще один и использовать его как бит тега. При изменении слова памяти какой-либо пользовательской программой, процессор должен автоматически сбрасывать скрытый бит тега. Ведь если данное слово станет частью указателя, то тот будет неверным. Только микрокод расположенный ниже MI имеет команды для включения битов тега.
В памяти AS/400 также используются биты тега. Поскольку в архитектуре PowerPC таковые не предусмотрены, нам пришлось добавить к ней режим активных тегов (tags-active mode). В этом режиме процессор «знает» о битах тега и будет сбрасывать их всякий раз, когда пользователь изменяет слово в памяти. Все процессоры AS/400 работают в режиме активных тегов. Существующие процессоры PowerPC используют режим неактивных тегов.
65-разрядный процессор?
В AS/400 ширина слова памяти возросла до 64 разрядов данных. С каждой восьмеркой байтов памяти AS/400 связан бит тега и указатель MI, занимающий два таких слова. В 1991 году нам виделись некоторые преимущества в том, чтобы хранить два теговых бита в регистрах новых RISC-процессоров, так же как и в памяти. Кроме того, мы хотели сократить размер указателей MI до 8 байтов. Внутри 16-байтовых указателей было неиспользуемое пространство, и казалось, что как раз настал подходящий момент сжать их.
Для того чтобы хранить такие тегированные указатели в регистрах, размер целочисленных регистров нужно было увеличить до 65 разрядов. Мы разрабатывали описанную схему около года, но в 1992 году отказались от нее и вернулись к решению, хранить теги только в памяти. На то было три основных причины. Во-первых, изменение размера указателя влияло на OS/400 и требовало слишком многих модификаций ее кода. Во-вторых, такой подход ограничивал будущие расширения размера адреса 64 разрядами. И третье, самое важное — процессоры в режиме активных тегов оказались бы несовместимы с набором команд PowerPC.
Первоначально мы не считали совместимость с PowerPC важной. Будущие процессоры, реализующие режим неактивных тегов, где 65-й разряд игнорируется, были бы полностью совместимы с PowerPC. А реализация 32-разрядных команд в режиме активных тегов и соответствующее программное обеспечение не планировалась даже в начале проекта. Ведь предполагалось, что этот режим будет использоваться только операционной системой AS/400, которая имеет дело с 64-разрядными командами.
Затем, когда было решено поддерживать совместимость с набором команд PowerPC, мы избавились от 65-го разряда в процессоре. Тогда намечалось некое слияние операционных систем IBM (см. Приложение). В рамках этого проекта предполагалось и программное обеспечение, большая часть которого предназначалась для 32-разрядного процессора. Поэтому мы обеспечили поддержку 32-разрядного набора команд всеми процессорами даже в режиме активных тегов. Наши процессоры второго поколения имеют режимы как активных, так и неактивных тегов и могут исполнять все прикладное и системное ПО PowerPC.
Хотя мы вернулись к 64-разрядным процессорам уже много лет назад, даже в IBM есть люди, по-прежнему упоминающие 65-разрядные, которые так никогда и не были созданы. Эта путаница возникает потому, что многие не знают, что собственно делает бит тега. Вероятно, если бы мы назвали его «битом защиты указателя в памяти» (pointer in memory protection), то не ввели бы в заблуждение столько народу. Но боюсь, тогда бы нам пришлось все время объяснять, зачем нам понадобился «бит pimp»[ 18 ].
Система команд Amazon
Архитектура PowerPC определяет привилегированные операции и команды, используемые только операционной системой и не предназначенные для прикладных программ. В AS/400 после специальных расширений этим «ведает» режим активных тегов. Например, механизм трансляции адреса должен поддерживать и одноуровневую память с единым адресным пространством, и обычную память с отдельным адресным пространством для каждого процесса. Мы используем режим активных тегов для того, чтобы приказать процессору использовать одноуровневую память. В режиме неактивных тегов процессор использует обычную трансляцию адреса PowerPC.
В состав других расширений AS/400 входят команды для работы с десятичными числами, некоторые новые команды загрузки и сохранения, а также расширения внутреннего регистра состояния процессора, предназначенные для оптимизации выполнения переходов. Мы не будем терять сейчас время на объяснение того, как эти команды используются в AS/400, а отложим это до следующих глав, где рассмотрим, как используется каждая из расширенных команд, более подробно.
А сейчас хочу привести некоторые цифры. Они помогут подытожить разговор об изменениях в архитектуре AS/400 и связанных с ними перспективах развития архитектуры PowerPC.
32-разрядная архитектура PowerPC определяет 187 команд, причем 11 из них — необязательные.
64-разрядная архитектура PowerPC определяет 228 команд (187 из 32-разрядного набора + 41 дополнительная), из них 21 — необязательная.
Архитектура Amazon определяет 253 команды (228 из 64-разрядного набора PowerPC + 25 дополнительных), из них 20 — необязательные. Заметьте, что 25 дополнительных команд доступны только в режиме активных тегов. Режим неактивных тегов поддерживает лишь 64-разрядный набор команд PowerPC. Но учтите, что определение любой архитектуры динамично и конкретные числа могут изменяться!
Реализации процессора AS/400
Первые использовавшиеся в AS/400 RISC-процессоры поддерживали только режим активных тегов и только структуру ввода-вывода AS/400. Поэтому они выполняли приложения, но не операционные системы, написанные для стандартного процессора PowerPC. Любая другая операционная система на одном из этих процессоров для таких функций как ввод-вывод должна пользоваться средствами, предоставляемыми операционной системой AS/400. (Подробнее об этом — в следующих главах).
Последнее поколение RISC-процессоров для AS/400е поддерживает и режим активных тегов, и режим неактивных тегов, а, кроме того, обе структуры ввода-вывода одновременно. Они способны исполнять любую ОС для PowerPC и используются как в серии AS/400е, так и в RS/6000. Процессоры будущего сохранят эти характеристики.
Процессоры Muskie первого поколения
Процессор первого поколения, известный под названием Muskie[ 19 ], был разработан в Рочестере в 1995 году как старшая модель процессора для AS/400. На тот момент он был самым быстрым процессором PowerPC и самым быстрым микропроцессором IBM. Первоначально он имел время цикла 6,5 наносекунд, что соответствует тактовой частоте 154 МГц. В 1996 году мы представили еще более быстрые его версии со временем цикла 5,5 наносекунд (182 МГц).
Muskie явно предназначен для использования в системах коммерческих расчетов, а не в технических рабочих станциях. И хотя это не самая последняя наша разработка PowerPC, его стоит рассмотреть подробнее, чтобы понять различия между процес
сорами, предназначенными для коммерческих и научно-технических расчетов. Тогда станет ясно, почему было решено сконцентрировать усилия Рочестера на разработке процессоров для коммерческих вычислений (и для AS/400, и для RS/6000), тогда как Остин занимается процессорами для научно-технических расчетов.
Процессор Muskie — одномодульный, многокристальный, конвейерный, суперскалярный и предназначен для старших RISC-моделей AS/400. Это единственный многокристальный процессор семейства PowerPC. Процессор построен по четырех-канальной (4-way) суперскалярной схеме, то есть может выбирать и исполнять до четырех команд за цикл. Кроме того, поддерживаются и многопроцессорные конфигурации.
Рисунок 2.4 Структурная схема процессора Muskie
Однокристальные процессоры обычно изготавливаются по технологии КМОП (комплиментарный метал-окисел-полупроводник). Микросхемы КМОП потребляют меньше мощности, чем микросхемы других технологий, то есть рассеивают меньше тепла. В результате, на одном кристалле может быть размещено больше транзисторов. Пока все схемы размещены на одном кристалле, маломощные цепи КМОП работают очень быстро. Иначе обстоит дело со связями между кристаллами. При использовании усилителей КМОП в многокристальном процессоре производительность уменьшается.
Все шесть кристаллов Muskie используют технологию БиКМОП (Биполярный-КМОП). Биполярная технология имеет высокое быстродействие (в этом ее преимущество) и потребляет большую мощность. Недостаток БиКМОП — большое выделение тепла. Из-за объема рассеиваемого тепла биполярные кристаллы не могут использовать столь же высокую плотность упаковки, как кристаллы КМОП. Технология БиКМОП позволяет размещать на одном кристалле как биполярные цепи (для внешних усилителей), так и цепи КМОП (для схем внутри кристалла).